TASTE AND SMELL PERCEPTION IN THE ELDERLY: EFFECT OF MEDICATIONS AND DISEASE

SUSAN S. SCHIFFMAN and JENNIFER ZERVAKIS

Department of Psychiatry Duke University Medical Center Durham, NC 27710 USA

- I. Introduction
- II. Physiology of Taste and Smell and their Alterations with Age
 - A. Taste
 - B. Smell
- III. Perception of Taste and Smell in the Elderly
 - A. Taste
 - B. Smell
- IV. Diseases that Affect the Senses of Taste and Smell
 - A. Cancer
 - B. Alzheimer's Disease
- V. Effect of Medications on Taste and Smell
- VI. Flavor Enhancement Compensates for Taste and Smell Losses in Elderly Persons
 - A. Study 1: Flavor Enhancement Increases Lymphocyte Counts in Elderly Retirement Home Residents
 - B. Study 2: Taste and Odor Stimulation Increases Salivary Flow and Improves Secretion Rate of Salivary IgA
 - C. Study 3: Sensory Enhancement of Foods for Sick Elderly Increases Intake and Improves Nutritional Parameters
 - D. Study 4: Flavor Enhancement of the Entree at Dinner Can Reduce Sodium Levels in a Meal by 500 mg
 - E. Study 5: Flavor Enhancement Increases Preference for Vegetables and Other Foods
- VII. CONCLUSION

References

Supported by NIA AG00443, NIA AG00029, and NIH NCRR GCRC MO1-RR-30

ADVANCES IN FOOD AND NUTRITION RESEARCH VOL 44 ISBN: 0-12-016444-2

Copyright © 2002 Academic Press All rights of reproduction in any form reserved

I. INTRODUCTION

During the 21st century, there will be substantial shifts in the demographics of the world's population with increases in both the number and percentage of elderly persons (United States Bureau of the Census, 1996; Wattenberg, 1976; American Association of Retired Persons, 1995). There are currently over 400 million people in the world aged 65 and greater (Davies, 1989); by the year 2025, the elderly population is expected to reach 1.121 billion people (US Senate Special Committee on Aging, 1985–1986). In order to provide food and nutrition that meet the needs of older individuals, the special sensory and nutritional requirements of this population must be taken into account.

This paper describes the changes in the senses of taste and smell that occur with advancing age. The incidence of taste and smell disorders will increase significantly over the coming decades due to the rapid growth in the elderly segment of the population. Furthermore, elderly individuals will likely experience taste and smell losses for a greater proportion of their lives due to the increase in life expectancy. Taste and smell disorders in the elderly present a public health challenge because they can increase the risk of malnutrition and food poisoning. Furthermore, taste and smell impairments reduce the quality of life (Schiffman, 1997).

Taste and smell are termed chemical senses because they respond to molecules in foods, liquids, and air. The chemical senses play a fundamental role in food intake, digestion, and satiation. First, they are involved in the generation of digestive secretions necessary for the absorption of nutrients. Taste and smell signals trigger salivary, gastric, pancreatic, and intestinal secretions which are termed cephalic phase responses (Giduck et al., 1987). Second, chemosensory signals serve as indicators of a food's nutritional value from learned association of a food's taste/smell with its post-ingestive effects (Booth, 1985; Schiffman and Warwick, 1992). This learned association enables the consumer to detect and discriminate among foods in the face of fluctuating nutritional requirements and to modulate food intake and meal size in anticipation of its nutritional consequences. Avoidance of toxins is also achieved by learned associations between taste/smell sensations and the physiological consequences of ingestion. Third, taste and smell sensations provide information about palatability of food prior to ingestion; furthermore they are primary reinforcers of eating and induce feelings of satiety (Schiffman and Warwick, 1992; Scott, 1992).

Deficits in taste or smell perception are a consequence of normal aging, certain disease states (especially Alzheimer's disease), medications, surgical interventions, and/or environmental exposure (Schiffman, 1983,

1997; Schiffman and Nagle, 1992). Impaired taste and smell perception in the elderly can lead to poor appetite (de Jong et al., 1999), inappropriate food choices (Duffy et al., 1995), lower nutrient intake (Griep et al., 1996; Schiffman, 1997), and impaired nutritional status and immunity (Schiffman, 1983, 1997; Schiffman and Wedral, 1996). Poor appetite is one cause of decreased energy consumption in the elderly (Morley, 1997; Morley and Thomas, 1999; Chapman and Nelson, 1994). Reduced energy consumption impacts protein and micronutrient status which, in turn, may induce subclinical deficiencies that directly affect function (Morley, 1997; Chapman and Nelson, 1994; Blumberg, 1997). Loss of taste, smell, and appetite are especially serious in elderly patients who are critically ill and thus at high risk for protein-energy malnutrition as well as micronutrient deficiencies (Opper and Burakoff, 1994; Schiffman and Wedral, 1996). For elderly who live in developing nations where there is chronic poverty, taste and smell losses may further exacerbate malnutrition.

An overview of the current literature on taste and smell perception indicates that a significant proportion of elderly individuals experience chemosensory losses during their lifetimes (Schiffman, 1997; Doty et al., 1984). Both longitudinal and cross-sectional data suggest that chemosensory losses become noticeable after the age of 60 years (although they may occur earlier) with increasing severity of loss after the age of 70 (Doty et al., 1984; Schiffman and Warwick, 1991). The taste system is more robust than the smell system until medication use increases (Schiffman, 1997). The medical terms used to classify impairments of taste and smell include: ageusia (no taste sensation), hypogeusia (decreased taste sensation), dysgeusia (distorted taste sensation), anosmia (no sensation of smell), hyposmia (decreased sensation of smell), and dysosmia (distorted smell sensation) (Schiffman, 1983). Distortions in taste and smell (i.e. dysgeusia and dysosmia) can occur in the presence or absence of a chemical stimulus and are not necessarily associated with loss of sensitivity (Cowart et al., 1989). For example, patients with dysgeusia often complain about bitter or metallic side tastes that are not characteristic of the foods they are eating. They may also experience an unpleasant taste in their mouths in the absence of food. While dysgeusia and dysosmia are difficult to quantify in psychophysical experiments, ageusia, hypogeusia, anosmia, and hyposmia can be quantified by measuring responses to taste and/or smell stimuli at both threshold and suprathreshold concentrations.

It should be noted here that many elderly are not consciously aware of their taste and smell impairments. Unlike sensory losses of vision or audition which elderly correctly attribute to changes in their own bodies, altered taste and smell are frequently attributed to outside sources. For example, elderly will state that "Food doesn't taste as good as it did in the old country" (i.e. they believe that food quality was better when they were young). Elderly in retirement communities routinely complain about the food even when it is of high quality. The underlying cause of these complaints, however, in reality is physiological impairment of the taste and smell systems which reduces the pleasure derived from food and beverages (Lucas and Schiffman, 1999). The attribution of chemosensory deficits to problems outside themselves (such as inferior quality of food) accounts in part for the finding of Nordin *et al.* (1995) that approximately 75% of normal elderly with smell loss reported "normal" smell sensitivity.

This chapter will provide a review of our current state of knowledge about: (1) age-related changes in the physiology and anatomy of the taste and smell systems, (2) perceptual changes in taste and smell with age, and (3) effect of diseases and medications on taste and smell perception. Methods for compensating for taste and smell losses with flavor-enhanced foods will also be described that can improve appetite, food palatability and/or intake, increase salivary flow and immunity, and reduce oral complaints in both sick and healthy elderly (Schiffman, 1979, 1997, 1998; Schiffman and Warwick, 1993; Schiffman and Miletic, 1999; Schiffman and Graham, 2000).

II. PHYSIOLOGY OF TASTE AND SMELL AND THEIR ALTERATIONS WITH AGE

To understand the nature of taste and smell losses in the elderly, it is necessary to consider the physiology and anatomy of these chemosensory pathways.

A. TASTE

The peripheral receptor cells for taste are polarized neuroepithelial cells clustered into buds and distributed on the dorsal surface of the tongue, tongue—cheek margin, base of the tongue near ducts of the sublingual glands, the soft palate, pharynx, larynx, epiglottis, uvula, and first one-third of the esophagus (Norgren, 1990; Reutter and Witt, 1993; Scott, 1992). Taste sensations are produced by the interaction of chemicals (e.g. from food) with taste buds during ingestion, chewing, and swallowing. Taste buds consist of approximately 50–100 cells arranged in an onion-like structure. The taste cells extend from the base of the bud to the taste pit where they terminate as microvillar taste hairs that project into the mucus of the pit. The apical margin of the pit extends to the epithelial

surface to form the taste pore, which averages 4–10 microns in diameter. Approximately 10–20 cells in a bud make contact with the tastants in the pit. Taste sensations are transduced when chemicals interact with receptors or channels in the cell surface membranes of the taste cells. Anatomical studies have shown that individual cells in taste buds differ structurally but it is not known currently whether cells that differ in appearance have different taste functions. Cells similar to taste receptor-like cells are also found in the mucosa of the stomach and intestine (Höfer *et al.*, 1996).

The individual taste cells in a bud undergo continuous renewal every 10–10.5 days. The continuous turnover of cells in the renewing taste epithelium involves two death factors Bax (a death factor in the Bcl-2 family of survival/death factors) and p53 (a tumor-suppressor protein linked to apoptosis and Bax transcription). Old taste receptor cells employ p53 and Bax as part of their apoptotic death pathway (Zeng and Oakley, 1999). This process of continuous renewal can be impaired by protein malnutrition that affects the reproduction of taste cells and reduces taste sensitivity (Schiffman, 1983).

Taste buds on the tongue are situated on specialized epithelial projections termed papillae. There are three different kinds of lingual papillae that contain taste buds: fungiform papillae (which are shaped somewhat like mushrooms), foliate papillae (which consist of linear depressions or vertical folds), and circumvallate papillae (which are surrounded by deep moats). There are approximately 200 fungiform papillae located on the anterior two-thirds of the tongue, with the highest concentration at the tip of the tongue. Fungiform papillae bear 1-20 taste buds at their apex. Foliate papillae are situated on the posterior-lateral sides of the tongue and tend to be especially sensitive to sour tastes. Circumvallate papillae are found on the posterior tongue arranged in a chevron-shaped form pointing caudally; circumvallate papillae contain the largest number of taste buds. There are 8-12 circumvallate papillae in humans with the taste buds located in deep moats surrounding the papillae. The burrows and trenches of both foliate and circumvallate papillae contain seromucous secretions that derive from von Ebner's glands and are believed to circulate tastants so that they come in contact with receptors. In addition, these seromucous secretions remove waste from the crypts of the foliate and circumvallate papillae. A fourth type of papilla also occurs on the tongue (filiform papillae) but it does not contain taste buds. Filiform papillae are conical projections of epithelium on the tongue which function to provide friction for movement of food. The entire tongue is sensitive to all taste qualities but there are regional differences in sensitivity, i.e. fungiform papillae are more sensitive to sodium salts, foliate papillae to acids, and circumvallate to bitter compounds.

There appear to be few anatomical losses in the numbers of papillae and/or taste buds in older individuals (Bradley, 1988; Mistretta, 1984; Arvidson and Friberg, 1980). However, functional loss in various regions of the tongue does occur in the elderly (Matsuda and Doty, 1995; Bartoshuk *et al.*, 1987) which suggests that sensory loss does occur even if there is not a physical diminution in the number of taste buds or papillae. Current opinion is that taste losses in normal aging in the presence or absence of disease may be due, in part, to changes at the level of the taste cell membranes (e.g. altered functioning of ion channels and receptors) rather than losses in the number of taste buds (see Mistretta, 1984).

A variety of ion channels and cell-surface receptors along with second messenger systems are responsible for differences in taste quality (Kinnamon and Margolskee, 1996; Spielman *et al.*, 1992). The salty taste of sodium salts results when Na⁺ ions traverse sodium channels in the membranes of taste cells (Schiffman *et al.*, 1983). The taste of potassium salts, like sodium salts, involves conductance of the potassium cation through taste cell membranes (Kim and Mistretta, 1993). Some but not all sweet compounds bind to seven-membrane-spanning cell surface receptors that activate the adenylate cyclase second messenger cascade (Lindemann, 1996). At least two pathways play a role in bitter taste transduction: (1) the phosphatidylinositol second messenger cascade, and (2) the alphagustducin/phosphodiesterase pathway (Lindemann, 1996). Little is known about changes in these biochemical pathways with aging.

Taste bud cells form direct neural connections called synapses with three nerves: the facial (cranial nerve VII), glossopharyngeal (cranial nerve IX), and vagus (cranial nerve X). These three cranial nerves relay signals from taste receptor cells to the rostral portion of the nucleus of the solitary tract (NST) in the medulla in the brain stem (Pritchard, 1991; Scott, 1992). Taste buds on the anterior two-thirds of the tongue as well as the anterior walls of the foliate papillae are innervated by the chorda tympani nerve (one branch of cranial nerve VII). The chorda tympani nerve passes through the middle ear where it can be damaged by microorganisms as in otitis media or during surgery as for acoustic neuroma. The greater superficial petrosal nerve (another branch of cranial nerve VII) relays information from most taste buds of the soft palate although a few are innervated by the deep petrosal branch of the glossopharyngeal nerve. Loss of sensory perception on the soft palate occurs in persons with dentures that cover this mouth region. Taste buds in the circumvallate papillae and those in the posterior walls of the foliate papillae are innervated by the glossopharyngeal nerve. There are interactions between the chorda tympani nerve and glossopharyngeal nerve. Stimulation of the chorda tympani nerve normally inhibits responses from the glossopharyngeal

nerve; anesthetizing the chorda tympani nerve leads to potentiation of bitter taste responses from the circumvallate papillae contralateral to the anesthetized side (Lehman *et al.*, 1995; Yanagisawa *et al.*, 1998; Catalanotto *et al.*, 1993). The superior laryngeal branch of the vagus nerve innervates taste buds located on the far posterior tongue, the epiglottis, the larynx, and the esophagus.

The NST not only receives information from the gustatory system but also from the olfactory (first cranial) nerve (Van Buskirk and Erickson, 1977) and from visceral sensory fibers that originate in the esophagus, stomach, intestines, and liver (Pritchard, 1991; Schiffman and Warwick, 1992). These visceral projections terminate in the caudal portion of NST. This intermingling of taste, smell, and visceral inputs in NST is responsible in part for the impact of the chemical senses on metabolic activity and digestive secretions. The converse also occurs, e.g. the activity in taste neurons can be modified by transient physiological status (Contreras and Frank, 1979; Jacobs et al., 1988; Giza et al., 1993). Axons from the taste portion of NST project to the ventroposteromedial nucleus of the thalamus and ultimately to the cortex. Axons from the visceral division of NST branch to the parabrachial nucleus with subsequent projections to lateral hypothalamus, amygdala, and the bed nucleus of stria terminalis. Little is known about age-related losses in the neural taste pathways to NST or higher neural centers that mediate taste.

Pungent qualities in the oral cavity (e.g. from chili peppers, ginger, or carbonation) as well as temperature and touch are transmitted by cranial nerve V (the trigeminal nerve) as well as free nerve endings of cranial nerves VII, IX, and X (Green, 1996). Trigeminal nerve fibers terminate in fungiform and foliate papillae on the anterior two-thirds of the tongue. The trigeminal nerve also transmits information about the texture of food such as oily sensations. Sensory information transmitted by the trigeminal nerve is not considered a "taste" because the trigeminal nerve is not directly stimulated by electrical signals from taste buds; rather trigeminal stimulation involves a different sense called chemesthesis which is related to nociception (Green, 1996). However, recent data on a phenomenon called "thermal taste" suggests that there is some interaction between chemesthesis and taste. Warming the anterior edge of the tongue from a cold temperature can evoke sweetness, whereas cooling can evoke sourness and/or saltiness (Cruz and Green, 2000). More data are necessary to understand the mechanism(s) for this phenomenon.

B. SMELL

Odor sensations occur when odorants interact with olfactory receptor neurons that are situated in the olfactory mucosa located on the dorsal

aspect (top) of the nasal cavity, the septum, and part of the superior turbinate bones in the nose (Schiffman, 1997). There are three types of cells in the olfactory mucosa: (1) olfactory neurons which are bipolar cells with cilia projecting from their terminal ends to form a characteristic dense ciliary blanket where volatile compounds first contact the olfactory receptors in the olfactory epithelium, (2) supporting or sustentacular cells that terminate in microvilli that move mucus around, and (3) basal cells (like stem cells) which make new olfactory receptor cells. The number of olfactory receptor cells is vast, approximately 10⁶ in man and 10⁸ in rabbits (Moulton, 1974). In rats and dogs the olfactory epithelium is easily distinguishable due to its yellowish color; in humans it is more difficult to visualize because it is pinkish and blends with the respiratory epithelium which lines the rest of the nasal cavity. Odorants (the chemicals that induce odor) reach the olfactory receptors via orthonasal transport through the nares or via retronasal transport from the oral cavity. In orthonasal transport, the structure of the nose with its bony turbinates creates turbulent airflow patterns that direct volatile compounds to the olfactory receptor cells in the top of the nasal cavity.

Current biochemical studies suggest olfactory transduction commences with the binding of an odorant ligand to a protein receptor on the olfactory neuron cell surface. This initiates a cascade of enzymatic reactions that include the production of a second messenger and the eventual depolarization of the cell membrane. Olfactory receptors have seven transmembrane regions and belong to a G-protein-coupled receptor superfamily that transmits information via adenylate cyclase and phosphoinositol signaling cascades (Breer, 1994; Buck and Axel, 1991). As many as 1000 different types of odorant receptors are thought to exist (approximately 1% of the human genome), but individual olfactory sensory neurons express only one odorant receptor type (Mombaerts, 1999). Yet, single olfactory cells respond to a range of compounds with a variety of olfactory qualities. The location of odorant binding is thought to be a hydrophobic pocket in transmembrane regions 3, 4, and 5 of the seven-membranespanning receptor. Expression of a particular olfactory receptor has been achieved in vivo in the rat by using an adenovirus vector as a tool for gene transfer to infect the nasal epithelia (Zhao et al., 1998). Olfactory neurons, like taste cells, are continuously shed but the average time for replacement is three times longer, i.e. approximately 30 days. This regeneration of neurons is unique since other neurons in the adult central nervous system are generally not replaced.

Axons of the olfactory bipolar cells course through tiny holes in the cribriform plate of the ethmoid bone to the olfactory bulb where they make their first synapses with second-order neurons in intricate neural

masses called glomeruli. Damage to olfactory neurons (and hence smell perception) can result when the neurons passing through the cribriform plate are severed (e.g. in falls that frequently occur in the elderly). Axons from first order olfactory neurons form stereotypical projection patterns onto specific glomeruli at fixed locations. The glomeruli of the olfactory bulb (about 2000 in number) represent the first tier of central information processing for odors (Mori and Yoshihara, 1995). Axons for all sensory neurons expressing a single odorant receptor type are thought to converge onto two or three glomeruli in the olfactory bulb. Individual olfactory sensory neurons can respond to multiple odorants so it is the pattern across multiple glomeruli that codes olfactory quality. Glomeruli in the elderly tend to atrophy as fibers degenerate and disappear taking on an appearance of Swiss cheese.

The olfactory tract courses caudally through the medial aspects of the olfactory bulb projecting to the anterior olfactory nucleus, the olfactory tubercle, the prepyriform cortex, and the amygdala and ultimately to higher brain centers that process the olfactory signals. The prepyriform cortex and the amygdala are brain structures that are part of the so-called limbic system, which processes emotions and memories as well as olfactory signals. Olfactory information is ultimately transmitted to the hypothalamus (which mediates food intake) and then to the neocortex. Noninvasive techniques are currently being used to study cortical responses to different chemical stimuli in humans; these studies suggest that the pyriform cortex, orbitofrontal areas, and parts of the parietal and temporal cortices are activated by odorants with varying odor qualities (Kettenmann *et al.*, 1996; Zald and Pardo, 1997). However, there are significant differences in the degree of activation of these areas dependent on the odor quality and pleasantness of the stimulus.

A range of anatomic and physiologic modifications of the olfactory epithelium, olfactory bulb and nerves, hippocampus and amygdaloid complex, and hypothalamus occur with age, and these changes parallel perceptual losses in the olfactory system during the aging process. These include: reduced protein synthesis and structural alterations in olfactory epithelium (Dodson and Bannister, 1980; Naessen, 1971), atrophy in olfactory bulb and nerve (Hinds and McNelly, 1981; Liss and Gomez, 1958; Smith, 1942), presence of senile plaques and neurofibrillary tangles in hippocampus and amygdaloid complex (Scheibel and Scheibel, 1975; Tomlinson and Henderson, 1976), hypothalamic degeneration including disruption of hypothalamic architecture paralleled by deterioration and loss of dendritic surface (Machado-Salas *et al.*, 1977), altered calcium homeostasis in the hippocampus leading to elevated intracellular calcium (Landfield and Pitler, 1984), and hippocampal pathology including an

increase in reactive astrocytes associated with elevated plasma adrenocorticoids (Landfield *et al.*, 1978). Degeneration involves damage to cells, reduced cell numbers, and diminished levels of neurotransmitters (Schiffman, 1983; Leopold *et al.*, 1989; Morrison and Costanzo, 1992). Recent data suggest that loss in olfactory function may also lead to a concomitant decrease in trigeminal sensitivity (Hummel *et al.*, 1996) but the mechanism for this observation is not known.

III. PERCEPTION OFTASTE AND SMELL IN THE ELDERLY

Most studies of chemosensory perception in the elderly support agerelated losses at both the threshold level as well as suprathreshold levels (Schiffman, 1997; Doty et al., 1984; Wysocki and Gilbert, 1989; Stevens and Dadarwala, 1993). Suprathreshold impairments include reduced perceived intensity of stimuli, diminished ability to discriminate among chemosensory stimuli, and deficits in the ability to identify odors and taste on the basis of taste and smell.

A. TASTE

Current textbooks on sensory perception usually state that there are only four "basic" tastes (sweet, sour, salty, and bitter). There is emerging experimental evidence, however, in a variety of species including rodents, monkeys, and humans that the full range of taste quality is far broader than four so-called "basic" tastes (reviewed in Schiffman, 2000). Chemicals with qualities such as metallic (iron salts), umami (monosodium glutamate/5'-nucleotides), chalky (calcium salts), and even fatty appear to activate taste neurons (Schiffman and Erickson, 1993; Plata-Salaman *et al.*, 1992; Schiffman, 2000; Gilbertson *et al.*, 1997). Most studies have reported losses for all of these taste qualities in the elderly. Generally, the sense of taste is not totally absent (ageusia) in the elderly, but rather it is reduced (hypogeusia, i.e. elevated thresholds or loss in suprathreshold sensitivity) or is distorted (dysgeusia).

1. Losses of taste at threshold concentrations

Taste detection thresholds as well as recognition thresholds are elevated in older individuals (Schiffman, 1993; Stevens *et al.*, 1995; Murphy, 1993), but the degree of loss depends on the chemical structure of the compounds tested as well as the disease states, medications, surgical interventions, and environmental exposures that an individual has experienced

(Schiffman, 1983, 1993). A taste detection threshold is the lowest concentration at which a tastant is correctly distinguished from a diluent such as water; a taste recognition threshold is the lowest concentration at which a tastant is correctly identified. Age-related losses for so-called "basic" tastes such as NaCl (salty), sucrose (sweet), citric acid (sour), and quinine HCl (bitter) using whole mouth stimulation are minimal in elderly who suffer from no diseases and take no prescription medications (see Table I). The only taste losses that reached statistical significance in these very healthy elderly were for NaCl. However, far greater losses occur in those elderly taking medications but who otherwise live active, normal lives. The average detection thresholds for elderly individuals with one or more medical conditions and taking an average of 3.4 medications were significantly elevated compared to a young cohort, i.e. 11.6 times higher for sodium salts (see Table II): 2.7 times higher for sweeteners (see Table III); 4.3 times higher for acids (see Table IV); 7.0 times higher for bitter compounds (see Table V); 2.5 times higher for amino acids (see Table VI); 5.0 times higher for glutamate salts (see Table VII). This is an average loss across these taste qualities of 5.41. Age-related losses in the oral and taste perception of oil-in-water emulsions are given in Table VIII; detection thresholds for oil-in-water emulsions in the elderly were on average 3.14 times higher than for young subjects. Hospitalized elderly patients suffering from involuntary weight loss have even more severe taste losses at the threshold level (Schiffman and Wedral, 1996).

Thresholds for oral trigeminal stimulants such as capsaicin (8-methyl-N-vanillyl-6-noneamide), however, showed a different pattern with age (Schiffman and Graham, 1991). Capsaicin, a component in red chili pepper,

TABLE I

MEAN DETECTION THRESHOLDS FOR TASTE OVER THE LIFESPAN FOR PERSONS TAKING NO
PRESCRIPTION MEDICATIONS AND HAVING NO MEDICAL PROBLEMS

Age in years	NaCl ¹	Sucrose	Citric acid	Quinine HCl
70–79	0.036 M ^a	0.045 M	0.0014 M	0.161 mM
60-69	$0.031 \mathrm{M}^{\mathrm{a,b}}$	0.030 M	0.0012 M	0.0012 mM
50-59	0.028 Ma,b	0.028 M	0.0015 M	0.0132 mM
40-49	0.018 Ma,b	0.038 M	0.0014 M	0.0615 mM
30-39	0.016 M ^b	0.033 M	0.0003 M	0.0915 mM
20–29	0.013 M ^b	0.025 M	0.0008 M	0.0535 mM
10–19	0.023 M ^{a,b}	0.024 M	0.0011 M	0.0601 mM

¹ Means with the same letters are statistically equivalent

Source: Data from Schiffman, 1994

MEAN DETE	ECTION THRESHOLDS FO	R SODIUM SALIS AI p	H 7.0
Stimulus	Young (Y)	Elderly (E)	E/Y (ratio of elderly to young)
Monosodium glutamate	0.00126 M	0.00638 M	5.06
Na acetate	0.00242 M	0.0190 M	7.84
Na ascorbate	0.00404 M	0.0250 M	6.19
Na carbonate	0.00218 M	0.00829 M	3.79
Na chloride	0.00238 M	0.01850 M	7.76
Na citrate	0.000531 M	0.0130 M	24.5

0.0160 M

0.0138 M

0.0283 M

0.0159M

5.21

16.2

28.8

10.5

Source: Data from Schiffman et al., 1990b

Na phosphate monobasic

Na succinate

Na sulfate

Na tartrate

TABLE III
MEAN DETECTION THRESHOLDS FOR SWEETENERS

0.00307 M

0.000854 M

0.000981 M

0.00151M

Stimulus	Young (Y)	Elderly (E)	E/Y (ratio of elderly to young)
Acesulfam-K	$4.44 \times 10^{-5} \text{ M}$	$7.47 \times 10^{-5} \text{ M}$	1.68
Aspartame	$2.24 \times 10^{-5} \text{ M}$	$9.13 \times 10^{-5} \text{ M}$	4.07
Calcium cyclamate	$2.66 \times 10^{-4} \text{ M}$	$4.12 \times 10^{-4} \text{ M}$	1.55
Fructose	$4.39 \times 10^{-3} \text{ M}$	$10.1 \times 10^{-3} \text{ M}$	2.30
Monellin	$1.95 \times 10^{-8} \text{ M}$	$9.13 \times 10^{-8} \text{ M}$	4.67
Neohesperidin dihydrochalcone	$2.20 \times 10^{-6} \text{ M}$	$4.60 \times 10^{-6} \text{ M}$	2.09
Rebaudioside	$4.61 \times 10^{-6} \text{ M}$	$13.0 \times 10^{-6} \text{ M}$	2.82
Sodium saccharin	$1.47 \times 10^{-5} \text{ M}$	$4.24 \times 10^{-5} \text{ M}$	2.88
Stevioside	$5.31 \times 10^{-6} \text{ M}$	$16.0 \times 10^{-6} \text{ M}$	3.02
Thaumatin	$7.16 \times 10^{-8} \text{ M}$	$13.3 \times 10^{-8} \text{ M}$	1.86
D-tryptophan	$1.09 \times 10^{-4} \text{ M}$	$3.22 \times 10^{-4} \text{ M}$	2.95

Source: Data from Schiffman et al., 1981

conveys a burning sensation in the mouth. Capsaicin was dissolved in ethanol, impregnated in small rectangles of chromatography paper, and dried to evaporate the ethanol solvent. The mean detection threshold for capsaicin delivered by chromatography paper was found to be 1.00 ppm \pm 1.07 for 20 young subjects (18 to 25 years of age) and 4.83 ppm \pm 3.52 for 20 middle-aged subjects (45 to 60 years of age). None of the young or middle-aged subjects were taking medications other than estrogen. The

TABLE MEAN DETECTION THREE	- '
Young (Y)	Elderly (E)

Stimulus	Young (Y)	Elderly (E)	E/Y (ratio of elderly to young)
Acetic	0.000106 M	0.000273 M	2.58
Ascorbic	0.000281 M	0.000725 M	2.58
Citric	0.0000498 M	0.000375 M	7.53
Glutamic	0.0000920 M	0.000463 M	5.03
Hydrochloric	0.0000179 M	0.0002 M	11.17
Succinic	0.000132 M	0.000188 M	1.42
Sulfuric	0.0000468 M	0.000100 M	2.14
Tartaric	0.0000864 M	0.000163 M	1.89

Source: Data from Schiffman, 1993

TABLE V
MEAN DETECTION THRESHOLDS FOR BITTER TASTES

Stimulus	Young (Y)	Elderly (E)	E/Y (ratio of elderly to young)
Caffeine	$1.30 \times 10^{-3} \text{ M}$	$1.99 \times 10^{-3} \text{ M}$	1.53
Denatonium benzoate	$1.15 \times 10^{-8} \text{ M}$	$3.23 \times 10^{-8} \text{ M}$	2.81
KNO ₃	$1.91 \times 10^{-3} \text{ M}$	$3.27 \times 10^{-2} \text{ M}$	17.1
$MgCl_2$	$1.02 \times 10^{-3} \text{ M}$	$5.20 \times 10^{-3} \text{ M}$	5.10
MgNO ₃	$1.40 \times 10^{-3} \text{ M}$	$3.33 \times 10^{-2} \text{ M}$	23.8
MgSO ₄	$3.23 \times 10^{-4} \text{ M}$	$6.08 \times 10^{-3} \text{ M}$	18.8
Naringin	$4.27 \times 10^{-5} \text{ M}$	$1.38 \times 10^{-4} \text{ M}$	3.23
Phenylthiocarbamide	$5.91 \times 10^{-4} \text{ M}$	$1.26 \times 10^{-3} \text{ M}$	2.13
Quinine HCl	$3.99 \times 10^{-6} \text{ M}$	$8.07 \times 10^{-6} \text{ M}$	2.02
Quinine sulfate	$2.04 \times 10^{-6} \text{ M}$	$8.75 \times 10^{-6} \text{ M}$	4.29
Sucrose octaacetate	$3.89 \times 10^{-6} \text{ M}$	$5.32 \times 10^{-6} \text{ M}$	1.37
Urea	$1.03 \times 10^{-1} \text{ M}$	$1.16 \times 10^{-1} \text{ M}$	1.12

Source: Data from Schiffman et al., 1994a

mean detection threshold for 20 community-dwelling elderly subjects (70 to 82 years of age) taking an average of 3.2 medications was 3.34 ± 2.62 . Interestingly, 20 hospitalized elderly patients taking an average of 6.2 medications had a mean detection threshold of 0.95 ppm \pm 2.07 which was similar to young subjects; however, the same hospitalized subjects had very elevated thresholds for NaCl and sucrose. Statistical analysis of these data indicated that aging in the absence of medications tends to increase the threshold for capsaicin while medications and illness

TABLE VI
MEAN DETECTION THRESHOLDS FOR AMINO ACIDS

Stimulus	Young (Y)	Elderly (E)	E/Y (ratio of elderly to young)
L-alanine	$1.62 \times 10^{-2} \text{ M}$	$1.95 \times 10^{-2} \text{ M}$	1.20
L-arginine	$1.20 \times 10^{-3} \text{ M}$	$1.12 \times 10^{-3} \text{ M}$	0.93
L-arginine HCl	$1.23 \times 10^{-3} \text{ M}$	$2.39 \times 10^{-3} \text{ M}$	1.94
L-asparagine	$1.62 \times 10^{-3} \text{ M}$	$9.33 \times 10^{-3} \text{ M}$	5.75
L-aspartic acid	$1.82 \times 10^{-4} \text{ M}$	$5.01 \times 10^{-4} \text{ M}$	2.75
L-cysteine	$6.30 \times 10^{-5} \text{ M}$	$3.90 \times 10^{-4} \text{ M}$	6.19
L-cysteine HCl	$1.60 \times 10^{-5} \text{ M}$	$2.00 \times 10^{-5} \text{ M}$	1.25
L-glutamic acid	$6.30 \times 10^{-5} \text{ M}$	$1.00 \times 10^{-4} \text{ M}$	1.59
L-glutamine	$9.77 \times 10^{-3} \text{ M}$	$2.69 \times 10^{-2} \text{ M}$	2.75
L-glycine	$3.09 \times 10^{-2} \text{ M}$	$6.17 \times 10^{-2} \text{ M}$	2.00
L-histidine	$1.23 \times 10^{-3} \text{ M}$	$6.45 \times 10^{-3} \text{ M}$	5.24
L-histidine HCl	$7.94 \times 10^{-5} \text{ M}$	$3.89 \times 10^{-4} \text{ M}$	4.90
L-isoleucine	$7.41 \times 10^{-3} \text{ M}$	$1.20 \times 10^{-2} \text{ M}$	1.62
L-leucine	$6.45 \times 10^{-3} \text{ M}$	$1.29 \times 10^{-2} \text{ M}$	2.00
L-lysine	$7.08 \times 10^{-4} \text{ M}$	$2.24 \times 10^{-3} \text{ M}$	3.16
L-lysine HCl	$4.47 \times 10^{-4} \text{ M}$	$2.09 \times 10^{-3} \text{ M}$	4.68
L-methionine	$3.72 \times 10^{-3} \text{ M}$	$2.63 \times 10^{-3} \text{ M}$	0.71
L-phenylalanine	$6.61 \times 10^{-3} \text{ M}$	$1.91 \times 10^{-2} \text{ M}$	2.89
L-proline	$1.51 \times 10^{-2} \text{ M}$	$3.72 \times 10^{-2} \text{ M}$	2.46
L-serine	$2.09 \times 10^{-2} \text{ M}$	$2.63 \times 10^{-2} \text{ M}$	1.26
L-threonine	$2.57 \times 10^{-2} \text{ M}$	$2.00 \times 10^{-2} \text{ M}$	0.78
L-tryptophan	$2.29 \times 10^{-3} \text{ M}$	$2.88 \times 10^{-3} \text{ M}$	1.26
L-valine	$4.16 \times 10^{-3} \text{ M}$	$1.15 \times 10^{-2} \text{ M}$	2.76

Source: Data from Schiffman et al., 1979

counteract the aging effect and lower the threshold. The low thresholds for capsaicin found in sick elderly may be due to sores in the mouth or to leaky membranes subsequent to medication use that increase the interaction of capsaicin with the trigeminal nerve endings. The relative increase in sensitivity to burning/irritation and the decrease in sensitivity to actual tastes such as salty and sweet in sick elderly will increase the salience of the burning or irritant properties of a spicy meal.

2. Losses of taste at suprathreshold concentrations

Suprathreshold taste studies for the most part have found that the elderly perceive a broad range of tastes to be less intense than younger persons (Schiffman, 1993; Murphy, 1993; Schiffman and Wedral, 1996). The degree of loss, however, differs across studies, and these differences are probably

TABLE VII

MEAN DETECTION THRESHOLDS FOR GLUTAMATE SALTS
(WITH AND WITHOUT INOSINE-5'-MONOPHOSPHATE—IMP)

Stimulus	Young (Y)	Elderly (E)	E/Y (ratio of elderly to young)
Sodium glutamate	$9.02 \times 10^{-4} \text{ M}$	$2.83 \times 10^{-3} \text{ M}$	3.14
Sodium glutamate with 0.1 mM IMP	$1.13 \times 10^{-4} \text{ M}$	$8.88 \times 10^{-4} \text{ M}$	7.86
Sodium glutamate with 1 mM IMP	$4.80\times10^{-5}~\mathrm{M}$	$1.45 \times 10^{-4} \text{ M}$	3.02
Potassium glutamate	$9.02 \times 10^{-4} \text{ M}$	$7.69 \times 10^{-3} \text{ M}$	8.53
Potassium glutamate with 0.1 mM IMP	$1.06 \times 10^{-4} \text{ M}$	$5.49 \times 10^{-4} \text{ M}$	5.18
Potassium glutamate with 1 mM IMP	$1.08 \times 10^{-5} \text{ M}$	$9.28 \times 10^{-5} \text{ M}$	8.59
Ammonium glutamate	$1.08 \times 10^{-3} \text{ M}$	$4.26 \times 10^{-3} \text{ M}$	3.94
Ammonium glutamate with 0.1 mM IMP	$1.39 \times 10^{-4} \text{ M}$	$4.58 \times 10^{-4} \text{ M}$	3.29
Ammonium glutamate with 1 mM IMP	$3.43 \times 10^{-5} \text{ M}$	$1.29 \times 10^{-4} \text{ M}$	3.76
Calcium diglutamate	$2.92 \times 10^{-4} \text{ M}$	$1.09 \times 10^{-3} \text{ M}$	3.73
Calcium diglutamate with 0.1 mM IMP	$6.06 \times 10^{-5} \text{ M}$	$3.27 \times 10^{-4} \text{ M}$	5.40
Calcium diglutamate with 1 mM IMP	$1.90 \times 10^{-5} \text{ M}$	$6.92 \times 10^{-5} \text{ M}$	3.64
Magnesium diglutamate	$2.53 \times 10^{-4} \text{ M}$	$1.86 \times 10^{-3} \text{ M}$	7.35
Magnesium diglutamate with 0.1 mM IMP	$4.21 \times 10^{-5} \text{ M}$	$2.89 \times 10^{-4} \text{ M}$	6.86
Magnesium diglutamate with 1 mM IMP	$2.57 \times 10^{-5} \text{ M}$	$4.52 \times 10^{-5} \text{ M}$	1.76
IMP (Inosine 5'-monophosphate)	$4.30 \times 10^{-4} \text{ M}$	$1.99 \times 10^{-3} \text{ M}$	4.63

Source: Data from Schiffman et al., 1991

due to genetic factors, cognitive status of the subjects, their medical conditions and use of medications, as well as different testing methods. Persons who genetically taste the compound PTC (phenylthiocarbamide)

TABLE VIII

MEAN DETECTION THRESHOLDS FOR THREE OILS IN % (MEDIUM CHAIN TRIGLYCERIDES-MCT,
SOYBEAN, AND MINERAL) IN FOUR EMULSIFIERS (ACACIA, EMPLEX, TWEEN-80, AND NA CASEINATE)

Oil	Emulsifier	Young (Y)	Elderly (E)	Ratio E/Y
MCT	Acacia	2.85	10.1	3.54
Soybean	Acacia	4.02	12.9	3.20
Mineral	Acacia	4.43	9.77	2.20
MCT	Emplex	3.93	25.0	6.37
Soybean	Emplex	6.52	14.9	2.28
Mineral	Emplex	8.85	20.0	2.26
MCT	Tween-80	5.35	19.3	3.60
Soybean	Tween-80	5.85	17.7	3.02
Mineral	Tween-80	5.77	19.9	3.49
MCT	Na caseinate	6.18	13.6	2.20
Soybean	Na caseinate	5.35	13.0	2.43
Mineral	Na caseinate	4.27	13.4	3.13

Source: Data from Schiffman et al., 1998

or PROP (6-n-propylthiouracil) at low concentrations find bitter compounds to taste stronger than those who are insensitive to the taste of these compounds (Schiffman et al., 1994). The relative degree of suprathreshold loss is also a function of the chemical structure of the tastant, especially for sweeteners (Schiffman et al., 1981) and amino acids (Schiffman and Clark, 1980). For example, there is a greater degree of age-related loss for high potency sweeteners (e.g. thaumatin) compared to sucrose. For amino acids, losses in suprathreshold taste intensity are greatest for glutamic acid and aspartic acid. The ability to discriminate intensity differences between various concentrations of a tastant is also diminished in old age (Schiffman, 1993; Schiffman and Wedral, 1996; Gilmore and Murphy, 1989). Some of these decrements in suprathreshold intensity perception may be a consequence of the marked losses in regional taste sensitivity that occur over different areas of the tongue in the elderly (Matsuda and Doty, 1995; Bartoshuk et al., 1987).

B. SMELL

A diversity of molecular types can produce odors but most are non-ionic volatile compounds with molecular weights of less than 300. In persons with a normal sense of smell, odorous molecules can be perceived and discriminated from one another at micro-, nano- and sometimes picomolar concentrations. Most natural odors encountered in the environment are

complex mixtures of many volatile compounds. An overview of the research literature on threshold and suprathreshold odor losses suggests that aging takes a greater toll on olfaction than taste, that is, the magnitude of odor deficits is greater in the elderly than taste deficits. A cross-sectional study of persons in seven decades of life suggests that a systematic decrement in performance on multiple olfactory tasks begins around 60 years of age and becomes significantly worse in the 70s and 80s (Schiffman and Warwick, 1991). Olfactory losses diminish the appreciation of food and can potentially lead to malnutrition. These decrements also increase the risk from hazards such as leaking gas, spoiled food, and smoke.

1. Losses of smell at threshold concentrations

Significant elevation of detection and recognition thresholds for a broad range of food odors and other volatile compounds has been found in most odor threshold studies in the elderly (Schiffman, 1979; Cain and Gent, 1991; Doty et al., 1989). For example, elevated thresholds have been reported for n-butanol (Kimbrell and Furchtgott, 1963), coal gas (Chalke and Dewhurst, 1957; Chalke et al., 1958), coffee and citral (Megighian, 1958), food odors including cherry, grape, and lemon (Schiffman, 1979), menthol (Murphy, 1983), pyridine and thiophene (Perry et al., 1980), 18 purified odorants (Venstrom and Amoore, 1968), and citralva (Schiffman and Warwick, 1991). In general, the odor thresholds for elderly persons are 2 to 15 times higher than for a younger cohort. Olfactory losses at threshold (and suprathreshold) levels are exacerbated by malnutrition and wasting; in some sick elderly, the sense of smell is totally absent (Schiffman and Wedral, 1996). Cognitive deficits do not necessarily impair the ability to detect odors relative to age-matched controls until fairly advanced stages of dementia. In Parkinson's disease, for example, losses in olfactory detection are independent of cognitive status (Doty et al., 1989).

2. Loss of smell at suprathreshold concentrations

Suprathreshold odor perception (Schiffman, 1977, 1979; Murphy, 1983; Schiffman and Warwick 1991; Stevens and Cain, 1985) and the chemesthetic sense in the nose (e.g. CO₂ puffed into the nose stimulates the nasal branch of the trigeminal nerve) (Stevens *et al.*, 1982) are both diminished in elderly persons. Suprathreshold olfactory losses have been quantified using several methodological approaches including magnitude estimation, identification, and discrimination studies. Magnitude estimation experiments, in which numbers are assigned to odors in proportion to their

perceived intensities, suggest that the elderly perceive suprathreshold odors to be half as intense as their younger counterparts. Magnitude estimates reveal losses for pleasant (benzaldehyde and d-limonene), foul (pyridine), and neutral (ethyl alcohol and isoamyl alcohol) odorants (Stevens and Cain, 1985). Similar losses using magnitude estimation have been reported for isoamyl butyrate (Stevens et al., 1982, 1984; Stevens and Cain, 1985), menthol (Murphy, 1983), eight odorants including citralva, geraniol, citronellal, 2-methoxy-3-isobutyl-pyrazine, benzaldehyde, 2-methoxypyrazine, acetic acid (Schiffman and Warwick, 1991), and CO₂ which stimulates the trigeminal nerve (Stevens et al., 1982).

Losses in the ability to identify odors are especially impaired, even in healthy elderly persons (Schiffman, 1979; Doty, 1991) but there is heterogeneity among individuals (Wysocki and Gilbert, 1989). Losses have been found in the ability to identify coffee, peppermint, coal tar, and oil of almonds (Anand, 1964), foods (Murphy, 1985; Schiffman, 1977), steroids (Schiffman, 1979), 40 common substances (Schemper *et al.*, 1981), and a microencapsulated battery of 40–50 odors (Doty *et al.*, 1984). Scores for healthy elderly persons over 70 years of age are generally 60% to 75% of those for young subjects. More than 75% of elderly persons over 80 have major difficulty perceiving and identifying odors (Doty, 1991). Odor identification is especially impaired in Alzheimer's disease (see section below on Diseases that Affect the Senses of Taste and Smell) and in patients with other neurodegenerative diseases (Doty, 1991; Schiffman *et al.*, 1990a). This is not surprising since odor identification is a cognitively demanding task which requires retrieval of verbal labels from memory.

Multidimensional scaling (MDS) experiments in which odors are arranged in a space on the basis of their perceived similarities indicate that the elderly have reduced capacity to discriminate the degree of difference between odors of different qualities (Schiffman, 1979; Schiffman and Warwick, 1991). MDS experiments have found losses in discrimination for food odors (Schiffman and Pasternak, 1979), common odors (Stevens and Lawless, 1981), and pyrazines (Schiffman and Leffingwell, 1981).

IV. DISEASES THAT AFFECT THE SENSES OF TASTE AND SMFLL

A broad range of medical conditions have been reported to induce taste and smell losses (see Tables IX and X). Some of the olfactory losses reported in elderly individuals may have arisen from medical conditions that occurred earlier in their lives such as nasal and/or sinus disease, upper respiratory infections, and head trauma. Nasal and/or sinus disease can block access of odorants to the olfactory epithelium or cause damage to

 $\begin{tabular}{ll} TABLE\ IX \\ \hline \end{tabular} MEDICAL\ CONDITIONS\ THAT\ HAVE\ BEEN \ REPORTED\ TO\ AFFECT\ THE\ SENSE\ OF\ TASTE \\ \hline \end{tabular}$

Classification/Condition	Type of study	# of subjects in study	Problem	Source
Nervous				
Alzheimer's disease	Experiment	66/human	Loss in ability to detect glutamic acid	Schiffman et al., 1990a
Bell's palsy	Clinical observation	34 of 41/human	Impairment of taste	Ekstrand, 1979
Damage to chorda tympani	Clinical observation	34/human	Ageusia	Jeppsson & Hallen, 1971
Guillain-Barre syndrome	Clinical observation	2/human	Ageusia/dysgeusia	Soria et al., 1990
Familial dysautonomia	Experiment (drop technique)	6/human	Hypogeusia; absence of fungi-form & circumvallate papillae	Henkin & Kopin, 1964
Head trauma	Experiment (drop technique)	29/human	Hypogeusia & dysgeusia	Schechter & Henkin, 1974
Multiple sclerosis	 Experiment Case study 	 79/human 1/human 	 Hypogeusia (for NaCl & QHCl) Episodic odd taste in mouth; loss of taste 	 Catalanotto et al., 1984 Cohen, 1964
Raeder's paratrigeminal syndrome	Clinical observation	3/human	Dysgeusia	Fisher, 1971
Tumors and lesions	Clinical observation Clinical observation	1. 1/human 2. 1/human	 Localized dysgeusia Central disturbance of taste 	 El-Deiry & McCabe, 1990 Nakajima et al., 1983

TABLE IX (continued)

	MEDICAL CONDITIO	IABLE) INS THAT HAVE BEE	IABLE IX ($continued$) MEDICAL CONDITIONS THAT HAVE BEEN REPORTED TO AFFECT THE SENSE OF TASTE	
Classification/Condition	Type of study	# of subjects in study	Problem	Source
Nutritional				
Cancer	Experiment Experiment (drops on middorsum of tongue)	1. 50/human 2. 50/human	 50/human 1. Elevated sweet threshold & 50/human lowered bitter threshold Higher RT for sucrose & lower RT for urea 	 DeWys & Walters, 1975 Gallagher & Tweedle, 1983
Chronic renal failure	Experiment	43/human	Higher recognition thresholds	Ciechanover et al., 1980
Liver disease including cirrhosis	 Experiment (drop technique) Experiment (drop technique) Experiment (drop technique) 	1. 8/human 2. 37/human 3. 38/human	 Decrease in acuity (increase in DT for NaCl and urea, and in RT for urea) Hypogeusia Hypogeusia 	 Burch et al., 1978 Garrett-Laster et al., 1984 Smith et al., 1976
Niacin (vitamin B ₃) deficiency	Clinical observation	I	Hypogeusia	Green, 1971
Thermal burn	Experiment (drops technique)	16 of 19/human	Hypogeusia or ageusia	Cohen et al., 1973
Zinc deficiency	Experiment	6/human	Hypogeusia	Nutr. Rev., 1978

Classification/Condition	Type of study	# of subjects in study	Problem	Source
Endocrine				
Adrenal cortical insufficiency	Experiment (drop technique)	—/human	Hypergeusia (very low DT, but higher than normal RT)	Henkin, 1975
Congenital adrenal hyperplasia	Experiment (drop technique)	—/human	Hypergeusia (very low DT, but higher than normal RT)	Henkin, 1975
Cretinism	Experiment	27/human	Higher incidence of nontasters of PTC	Shepard & Gartler, 1960
Cushing's syndrome	Experiment (drop technique)	—/human	Hypogeusia	Henkin, 1975
Panhypopituitarism	Experiment (drop technique)	/human	Hypergeusia (very low DT, but higher than normal RT)	Henkin, 1975
Hypothyroidism	1. — 2. Experiment	1. — 2. 18/human	1. — 2. Hypogeusia	 Schaupp & Seilz, 1969 McConnell et al., 1975
Diabetes mellitus	Experiment	9/human	Impaired ability to detect glucose	Halter et al., 1975
Gonadal dysgenesis (Turner's syndrome)	Clinical observation (drop technique)	9/human	Hypogeusia for sour and bitter tastes	Henkin, 1967
Pseudohypoparathyroid- ism	Clinical observation (drop technique)	6/human	Hypogeusia for sour and bitter tastes	Henkin, 1968

Classification/Condition Type of study	Type of study	# of subjects in study	Problem	Source
Local	i			
Facial hypoplasia	Clinical observation	5/human	Decrease in recognition sensitivity	Henkin <i>et al.</i> , 1966
Glossitis and other oral disorders	 Case study Clinical observation 	 1. 1/human 2. 48 of 54/human 	 Dysgeusia Dysgeusia 	 Brenner & Simon, 1984 Johansson et al., 1984
Leprosy	Experiment	12 of 30/human	Mild to severe hypogeusia	Soni & Chatterji, 1981
Oral Crohn's disease	Clinical observation	2/human	Metallic dysgeusia	Frankel et al., 1985
Radiation therapy	Clinical observation Clinical observation	1. 9/human 2. 1/human	 Hypogeusia/dysgeusia Hypogeusia/dysgeusia 	 Conger, 1973 Kalmus & Farnsworth, 1959
Sjogren's syndrome	Experiment (drop technique)	29/human	Hypogeusia	Henkin <i>et al.</i> , 1972
Viral and infectious				
Influenza-like infections	Experiment (drop technique)	87/human	Hypogeusia with & without dysgeusia; pathological changes in taste buds	Henkin et al., 1975

Classification/Condition	Type of study	# of subjects in study	Problem	Source
Other				
Amyloidosis and sarcoidosis	 Clinical observation Clinical observation 	1. 2/human 2. 1/human	 Taste dysfunction Ageusia 	 Schellinger et al., 1983 Ujike et al., 1987
Cystic fibrosis	 Experiment Experiment (drop technique) 	1. 2 of 16/human 2. 10 of 11/human	 Hypergeusia Hypergeusia 	 Desor & Maller, 1975 Henkin & Powell, 1962
High altitude	Clinical observation	1/human	Ageusia	Kassirer & von Pelejo Such, 1989
Hypertension	 Experiment Experiment 	1. 20/human 2. 17/human	 Higher NaCl thresholds Higher NaCl thresholds 	 Fallis et al., 1962 Viskoper & Lugassy, 1979
Laryngectomy	Clinical observation (drop technique)	123/human	Hypogeusia	Kashima & Kalinowski, 1979
Major depressive disorder	Experiment	36/human	Altered sensitivity to supra-threshold concentrations of sucrose	Amsterdam et al., 1987

 $\label{eq:table} TABLE \; X$ medical conditions that have been reported to affect the sense of smell.

Classification/ condition	Source	Type of study	# of subjects	Problem
Nervous				
Alzheimer's disease	 Moberg et al., 1987 Schiffman et al., 1990a Serby et al., 1985a,b 	 Experiment Experiment Experiment 	 42/human 66/human 11/human 	 Poor odor recognition memory Loss in ability to recognize odorants Hyposmia
Down's syndrome	Warner et al., 1988	Experiment	9/human	Low U PENN SIT scores
Epilepsy	Currie et al., 1971	Clinical	80 of 666/human	Phantosmia/dysosmia related to attack
Head trauma	 Leigh, 1943 Levin et al., 1985 Moran et al., 1985 Schechter & Henkin, 1974 Sumner, 1964 	 Clinical observation Experiment Clinical observation Experiment Clinical observation 	 72/human 52/human 29/human 87 of 1167/human 	Anosmia, hyposmia, or parosmia Olfactory naming and recognition impairment Anosmia Anosmia Anosmia Anosmia Anosmia
Korsakoff's syndrome	1. Jones <i>et al.</i> , 1975 2. Mair <i>et al.</i> , 1986	 Experiment Experiment 	1. 14/human 2. 8/human	 Severe impairment of olfactory discrimination Smell identification deficit
Migraine	 Crosley & Dhamoon, 1983 Wolberg & Ziegler, 1982 	 Clinical observation Clinical observation 	 2/human 1/human 	 Phantosmia Olfactory hallucination
Multiple sclerosis	Pinching, 1977	Clinical observation	22/human	Hyposmia or anosmia

$TABLE\ X\ (continued)$ Medical conditions that have been reported to affect the sense of smell

Classification/ condition	Source	Type of study	# of subjects	Problem
Nervous				
Parkinson's disease	 Ansari & Johnson, 1975 Doty et al., 1988 Serby et al., 1985a,b Ward et al., 1983 	 Experiment Experiment Experiment Experiment 	1. 10 of 22/ human 2. 81/human 3. 11/human 4. 72/human	 Decrease in olfactory acuity (increase in DT for amyl acetate) Decrements in olfactory tests Hyposmia Hyposmia
Tumors and lesions	 Bakay, 1984 Furstenberg et al., 1943 Jarus & Feldon, 1982 Olsen & DeSanto, 1983 	 Clinical observation Clinical observation Clinical observation Clinical observation 	1. 29/human 2. — 3. 1/human 4. 21/human	 Complete to partial (unilateral) anosmia Smell disturbances Anosmia Anosmia
Nutritional & metabolic	lic			
Chronic renal failure	Chronic renal failure Schiffman et al., 1978	Experiment	11/human	Reduced olfactory discrimination
Liver disease including cirrhosis	 Burch et al., 1978 Garrett-Laster et al., 1984 	 Experiment Experiment 	1. 8/human 2. 37/human	 Decrease in acuity (increase in DT for 3 odors and in RT for 2 odors) Hyposmia
Trimethylaminuria	Leopold et al., 1990	Clinical observation	1/human	Dysosmia
Vitamin B ₁₂ deficiency	Rundles, 1946	Clinical observation	4 of 20/human	Hyposmia, anosmia, or dysosmia

 ${\bf TABLE} \; X \; (continued)$ Medical conditions that have been reported to affect the sense of smell

Classification/ Condition	Source	Type of study	# of subjects	Problem
Endocrine				
Adrenal cortical insufficiency	Henkin, 1975	Experiment	—/human	Hyperosmia
Cushing's syndrome	Henkin, 1975	Experiment	—/human	Hyposmia
Hypothyroidism	 McConnell <i>et al.</i>, 1975 Schaupp & Seilz, 1969 	 Experiment — 	1. 18/human 2. —	1. Hyposmia 2. —
Diabetes mellitus	Jorgensen & Buch, 1961	Experiment	58/human	Hyposmia & anosmia
Gonadal dysgenesis (Turner's syndrome)	Henkin, 1967	Clinical observation	9/human	Hyposmia
Hypogonadotropic hypogonadism (Kallman's syndrome)	 Kallmann et al., 1944 Males et al., 1973 	 Clinical observation Clinical observation 	 Affected members of 3 families 6/human 	1. Anosmia 2. Anosmia
Primary amenorrhea	Marshall & Henkin, 1971	Experiment	96/human	Hyposmia
Pseudo- hypoparathyroidism	 Henkin, 1968 Weinstock et al., 1986 	 Clinical observation Experiment 	 6/human 5/human 	 Hyposmia Hyposmia
X-linked ichthyosis due to steroid sulfatase deficiency	 Andria et al., 1987 Sunohara et al., 1986 	 Clinical Case study 	1. 2/human 2. 3/human	1. Anosmia 2. Anosmia

${\bf TABLE} \ X \ (continued)$ medical conditions that have been reported to affect the sense of smell

Classification/ Condition	Source	Type of study	# of subjects	Problem
Local				
Adenoid hypertrophy	Ghorbanian et al., 1978	Experiment	48/human	Hyposmia
Allergic rhinitis, atopy, and bronchial asthma	1. Church et al., 1978 2. Fein et al., 1966	 Clinical observation Clinical observation (self-report) 	1. 54/human 2. 18/human	 Hyposmia Anosmia
Crouzon's syndrome	Das & Munro, 1979	Case study	2/human	Anosmia
Facial hypoplasia	Henkin et al., 1966	Clinical observation	5/human	Hyposmia
Leprosy	Barton, 1974	Experiment	57 of 150/human	Some degree of hyposmia
Ozena	Strandbygard, 1954	Clinical observation	10/human	Pathological olfactory mucosa
Paranasal sinus exenteration	Hoye et al., 1970	Clinical observation	17/human	Hyposmia
Sinusitis and polyposis	 Fein et al., 1966 Hotchkiss, 1956 Ryan & Ryan, 1974 	 Clinical observation (self-report) Clinical observation Clinical observation 	1. 18/human 2. 30/human 3. —	 Anosmia Most w/anosmia Parosmia & anosmia
Sjogren's syndrome	Henkin <i>et al.</i> , 1972	Experiment	29/human	Hyposmia

 $\label{eq:thm:condition} TABLE\ X\ (continued)$ Medical conditions that have been reported to affect the sense of smell

Classification/ condition	Source	Type of study	# of subjects	Problem
Viral and infectious				
Acute viral hepatitis	Acute viral hepatitis Henkin & Smith, 1971	Clinical observation	19/human	Hyposmia
HIV infection	Brody et al., 1991	Experiment	42/human	Hyposmia
Influenza-like infections	Henkin <i>et al.</i> , 1975	Experiment	87/human	Hyposmia with & without dysosmia; pathological changes in nasal mucous membranes
Other				
Amyloidosis and sarcoidosis	 Delaney et al., 1977 Schellinger et al., 1983 	Clinical observation	1. 5/human 2. 2/human	 Hyposmia due to damage to the CNS Smell dysfunction
Cystic fibrosis	 Henkin & Powell, 1962 Hertz et al., 1975 	 Experiment Experiment 	 9 of 11/human 19/human 	 Hyperosmia Hyposmia
Familial (genetic)	Singh <i>et al.</i> , 1970	Clinical observation	6 of 1 family/human	Anosmia
Laryngectomy	 Henkin <i>et al.</i>, 1968 Henkin & Larson, 1972 	 Clinical observation Clinical observation 	 35/human 2 of 4/human 	 Hyposmia Hyposmia
Psychiatric disorders Meats, 1988	Meats, 1988	Clinical observation		Olfactory hallucinations

receptors and olfactory pathways (Doty and Snow, 1987). Losses of olfactory sensations that occur after upper respiratory infections probably result from direct damage to the olfactory epithelium and replacement of the olfactory epithelium with respiratory epithelium (Douek *et al.*, 1975); olfactory cilia may be damaged as well (Jafek *et al.*, 1989). Anosmia subsequent to head trauma is thought to result from the shearing of olfactory nerve fibers as they course through the cribriform plate. Post-traumatic olfactory dysfunction has also been correlated with damage to the olfactory bulbs and tracts and the inferior frontal lobes (Yousem *et al.*, 1996). Aside from nasal disease, respiratory infections, and head trauma, the mechanisms by which diseases alter olfactory perception are not well understood.

Two chronic medical conditions in which the incidence of taste and/or smell disorders is especially high are cancer and Alzheimer's disease (AD). Both of these conditions disproportionately impact the elderly. Most AD patients are over the age of 65 years (Blacker *et al.*, 1997), and 60% of persons diagnosed with cancer are 65 years and older (Cohen, 1998), while 69% of all cancer deaths occur in persons over 65 years of age.

A. CANCER

Altered taste and smell functioning have been found in untreated patients (Ovesen et al., 1991; Brewin, 1980) as well as patients treated with radiation (Conger, 1973), chemotherapy (Nielsen et al., 1980; Lindley et al., 1996; Fetting et al., 1985), and immunotherapy (unpublished data, Schiffman, 1999). An overview of the chemosensory changes that have been observed in a variety of cancer types is given in Table XI. Altered preferences and complaints in cancer patients are shown in Table XII. The data indicate that cancer and its treatment impair the ability to detect the presence of basic tastes, reduce the perceived intensity of suprathreshold concentrations of tastants, and interfere with the ability to discriminate and identify tastes and odors. Fifty per cent or more of cancer patients may have impaired taste and smell functioning at some point during the course of their disease and treatment (DeWys and Walters, 1975). The time course of recovery (if any) varies over individuals with the duration of losses ranging from several weeks to six months or longer (Mossman et al., 1982; Conger, 1973; Ophir et al., 1988).

The causes of altered taste and smell functioning in cancer are not well understood but metabolic changes induced by the neoplasm itself or injury to the sensory receptors by therapies are likely involved. Chemotherapy and radiation therapy may also interfere with the turnover of taste and

CHANGES IN THRESHOLD, INTENSITY, DISCRIMINATION, AND IDENTIFICATION TASKS IN CANCER PATIENTS TABLE XI

Type of cancer	Effect of therapy	Threshold loss	No. of patients	Reference
Various malignant neoplams	Radiotherapy further impaired taste loss	Elevated detection and recognition thresholds for NaCl (salt), sucrose (sweet), HCl (sour) and urea (bitter) prior to radiotherapy; salty, sweet, and bitter further impaired by radiotherapy	35	Bolze et al., 1982
Oropharyngeal cancers	Radiotherapy	Elevated recognition thresholds for sucrose (sweet), HCl (sour), quinine HCl (bitter) during radiotherapy; recovery by 120 days	∞	Conger, 1973
Head and neck	Radiotherapy	Elevated detection and recognition thresholds, especially for bitter and salt thresholds during radiotherapy	13	Mossman and Henkin, 1978
Breast and colon	Prior to treatment	Elevated NaCl (salty) recognition thresholds	48	Carson and Gormican, 1977
Lung	Prior to therapy	Elevated recognition threshold for hydrochloric acid (sour); individual differences in bitter and sweet threshold changes	30	Williams and Cohen, 1978
Oropharyngeal	During and after radiotherapy	Elevated taste recognition thresholds for NaCl, sucrose, quinine sulfate, picric acid; thresholds returned to normal 6 weeks post-treatment	-	Kalmus and Farnsworth, 1959

TABLE XI (continued)

CHANGES IN THRESHOLD, INTENSITY, DISCRIMINATION, AND IDENTIFICATION TASKS IN CANCER PATIENTS

Type of cancer	Effect of therapy	Threshold loss	No. of patients	Reference
Oral squamous cell carcinoma	Radiation and chemotherapy	Thresholds for NaCl (salt), tartaric acid (sour), sucrose (sweet), and quinine (bitter) elevated by radiation and chemotherapy; recovery was not complete by 1 year	41	Tomita and Osaki, 1990
Various malignant neoplasms	During chemotherapy	Elevated glucose recognition threshold	36	Bruera <i>et al.</i> , 1984
Lung, ovary, breast	Increase in untreated patients; thresholds decreased only in patients who responded to chemotherapy (after 2 to 3 months)	Significant increase in electrical taste detection threshold; no change in smell threshold	51	Ovesen <i>et al.</i> , 1991
Gastrointestinal		Significant decrease in recognition threshold for urea (bitter)	30	Hall <i>et al.</i> , 1980
Melanoma	During 9 courses of chemotherapy	Loss of ability to discriminate between different concentrations of salt, sweet, sour, and bitter		Mulder et al., 1983
Breast cancer	Mixed sample (treated and untreated)	Significant reduction in smell identification in patients with estrogen-receptor positive breast cancer	46	Lehrer et al., 1985

TABLE XII
ALTERED PREFERENCES AND PATIENT COMPLAINTS

	ALIEKED	ALIEKED PREFERENCES AND PAHENT COMPLAINTS		
Type of cancer	Effect of therapy	Sensory loss	No. of patients	Reference
Various malignant neoplasms	Radiotherapy	Food aversions and cravings	147	Brewin, 1980
Various	Treated and untreated	Reduced palatability of high-protein foods, cereals, sweets in patients with taste aversions	111	Vickers et al., 1981
Oropharyngeal	Developed during first two weeks of radiotherapy	All food tasted nauseating, greasy or rancid; wine tasted metallic; water tasted salty		Kalmus and Farnsworth, 1959
Breast and lung	Prior to and during chemotherapy	Patients developed aversions to sweets, meats, caffeinated beverages, high fat and greasy foods during therapy	76	Mattes et al., 1987
28 types including breast, colorectal, Hodgkin's, lung, lymphoma	No difference between patients treated or untreated with chemotherapy	Patients who reported food aversions rated food samples of chocolate, ham, pork, roast beef and chicken as less pleasant	133	Nielsen <i>et al.</i> , 1980
Various		Symptom of reduced appetite correlates with elevated recognition threshold for sucrose (sweet); meat aversion correlates with lowered thresholds for urea (bitter)	50	DeWys and Walters, 1975

TABLE XII (continued) Altered preferences and patient complaints

Type of cancer	Effect of therapy	Sensory loss	No. of patients	Reference
Upper gastrointestinal; lung	Patients on chemotherapy had less distinct preference for any of the 5 concentrations of sucrose, particularly high levels	Highly varied hedonic responses to beverages containing 5 suprathreshold concentrations of citric acid (in lemonade), NaCl (in unsalted tomato juice), urea (in tonic water), and sucrose (in cherry drink); anorectics preferred lower sweetness levels than nonanorectics; yet sweet foods constituted a greater percentage of their daily caloric intake	62	Trant et al., 1982
Head and neck cancer	During radiotherapy	Percentage of patients reporting taste problems increased from 18% prior to radiation to over 80% during the 5th week of radiation; foods with abnormal taste included high protein foods (meat, eggs, dairy), fruits, vegetables, sweets, breads, cereal, coffee, tea	74	Chencharick and Mossman, 1983
Breast, lung	Chemotherapy-cisplatin	Complaints of metallic, bitter, or decreased taste; distorted sweet taste; changes in odor of food, especially unpleasantness; increased sensitivity to odors such as perfumes and hospital odors	44	Rhodes <i>et al.</i> , 1994

smell receptors. Oral complications experienced by cancer patients such as infections (fungal, viral, bacterial), ulcers, drug-induced stomatitis, and dry mouth may also play a role.

Unpleasant taste and smell sensations are one of the main causes of food aversions reported by cancer patients. Food aversions can also be learned during the course of cancer when sensory properties of foods are associated with gastrointestinal distress (e.g. nausea) of therapy (Andrykowski and Otis, 1990; Bernstein and Bernstein, 1981). Learned food aversions often persist long after all symptoms of discomfort have subsided.

B. ALZHEIMER'S DISEASE

Alzheimer's disease (AD) is a genetically heterogeneous and progressive degenerative disorder of the brain characterized by progressive memory loss and deteriorating cognitive functioning (Shastry, 1998). Losses in the ability to recognize, identify, and remember odorants are salient in the earliest phases of AD and are substantially worse than in age-matched controls. An overview of chemosensory studies of AD suggests that the size of olfactory deficits is related to the degree of dementia (Larsson et al., 1999). In 1974, Waldton performed both a cross-sectional and longitudinal study of olfaction in patients with AD. He found diminished ability to identify the odor of tinctura as foetida, camphor, citrus fruit, eau de cologne, menthol, and petrol. Subsequent studies have reported similar findings. Peabody and Tinklenberg (1985) found that AD patients had reduced ability to smell and identify strong odors (lemon, peppermint, coffee, maple, and vinegar) or select the correct identity of odors from a list. Alzheimer's patients also displayed less ability than age-matched controls on a 10-pair forced-choice identification task in which the patient was asked to choose which of two vials contained the odor named by the experimenter (Serby et al., 1985a, b; Serby, 1986, 1987). The 10 odor pairs tested in this experiment were: garlic-onion, lemon-orange, waterpineapple, chocolate-maple, bacon-curry, rose-vanilla, coffee-peanuts, vinegar-soap, cinnamon-licorice, and ketchup-mint.

Knupfer and Spiegel (1986) found that Alzheimer's patients had difficulty determining if the second stimulus of an odor pair was identical to the first one. Pairs of different, similar, and identical odors were presented including: coconut—cloves, eucalyptus—smoked bacon, aniseed—orange, rum—licorice, asparagus—pine needles, moth balls—camphor, marzipan—bitter almond, grass—hay, lemon—flower, and peppermint—spearmint. Knupfer and Speigel's AD patients were also asked to choose which of two vials contained an odor named by the experimenter, and again they performed poorly. Performance on a standardized scratch and

sniff test containing 36–40 odors impregnated in tapes was also impaired in AD patients (Warner et al., 1986; Koss et al., 1987, 1988; Kesslak et al., 1988; and Doty et al., 1987). Rezek (1987) also found that patients with AD performed poorly when they were asked to smell and identify cinnamon oil, lemon oil, peppermint oil, turpentine, and ground coffee and select the name of the odor from a 10-item list. Thus, there is considerable agreement among these studies that the ability to recognize and identify odors in AD is impaired.

Patients with AD also perform poorly on odor memory tasks. This was demonstrated by Moberg *et al.* (1987) who first presented AD patients with 10 target odors including onion, vanilla, almond, peppermint, lemon, cinnamon, pine, mothballs, smoke, and banana. Five minutes later, 20 odorants were presented – the original 10 target odors plus five distractants (odors similar to the original five odorants), and five dissimilar odors. The subject was asked to determine if any of the 20 odorants were the same as the original 10. Kesslak *et al.* (1988) also found poor olfactory memory in AD patients on an odor match to sample test. One of 15 uncommon odors (target) was followed by three "choice" odors. The task was to choose which of the three "choice" odors matched the target.

The data regarding altered olfactory functioning at threshold concentrations in Alzheimer's disease are more equivocal. Three studies have found little or no threshold losses in early AD (St Clair, 1985; Rezek, 1987; Koss et al., 1987, 1998). On the other hand, three other studies have reported losses. Knupfer and Spiegel (1986) determined thresholds with a three-bottle forced-choice procedure in which one bottle contained the odor plus solvent and the other two bottles contained only solvent. He found threshold losses for eucalyptol, citral, and prunolide (coconut). Doty et al. (1987) found that patients with mild to moderate AD had a threshold loss for the odor of phenyl ethyl alcohol using a single-staircase. forced-choice procedure. Murphy et al. (1987) reported a loss for butanol in AD using a two-alternative, forced-choice ascending series. Murphy et al. (1990) concluded that degree of elevation of olfactory thresholds in patients with Alzheimer's disease appears to reflect the effects of the disease process. Taste losses to glutamic acid have also been reported in AD (Schiffman et al., 1990a). It should be noted, however, that taste and smell losses are also found in demented patients without AD (Schiffman et al., 1990a).

Anatomic and physiological changes that occur during normal aging are especially profound in neurodegenerative diseases such as Alzheimer's disease (Doty, 1991). The sensory decrements in Alzheimer's disease result from histopathological and neurochemical changes in the olfactory epithelium (Talamo *et al.*, 1989), olfactory bulb (Ohm and Braak, 1987),

anterior olfactory nucleus (Averback, 1983; Ohm and Braak, 1987), olfactory tubercle (Simpson et al., 1984), amygdala (Brun and Gustafson, 1976), prepyriform cortex (Reyes et al., 1987), hippocampus (Brun and Gustafson, 1976; Hyman et al., 1984); entorhinal cortex (Brun and Gustafson, 1976; Hyman et al., 1984), uncus (Brun and Gustafson, 1976), and subiculum (Hyman et al., 1984). The histopathological changes in these olfactory projection areas include neuritic plaques, neurofibrillary tangles, and granulovacuolar degeneration. Altered neurotransmitter levels may also play a role in the olfactory losses associated with AD (Francis et al., 1999). Early olfactory losses (memory, identification) are presumed to be due to physiological changes of the central nervous system such as the limbic system rather than being peripheral in origin. Later deficits (e.g. threshold losses) are presumed to include peripheral physiological changes.

Genetic factors also appear to play a role in olfactory sensitivity in AD and are currently being used to predict who will get AD. For example, genetic studies have established a link between the apolipoproteinE (apoE) gene found on chromosome 19 and the development of AD (Strittmatter et al., 1993; Roses and Saunders, 1994). Inheritance of one of the three forms of the apoE gene, the E4 form, conferred a genetic risk, which may account for 60-80% of early onset AD. In one study, persons with the apoE4 allele showed significantly poorer odor identification than those without an E4 allele (Murphy et al., 1998; Bacon et al., 1998). The E2 form of the gene is apparently protective against AD while apoE3 is the most common. Recent data suggest that people who inherit an apoE2 gene with an apoE3 gene (each individual inherits two apoE genes, one from each parent) develop AD 20 years later on average than people who inherit two E4 genes. Persons with the apoE4-E4 combination develop AD at about 68 years of age on average while those with E2-E3 are not afflicted till about 90 years of age (see Baker, 1994). Less than one third of the population has one apoE4 gene with 1-2% possessing the apoE4-E4 combination. However, not everyone with the apoE4 gene gets AD which suggests that there are other risk factors.

Finding methods to compensate for chemosensory losses in patients with AD is important from the public health standpoint. Currently, four million Americans suffer from Alzheimer's disease (AD); 10% of Americans over 65 years of age have AD, and 50% of people over 85 years are afflicted. By 2020, it is estimated that 14 million Americans will be affected by the disease. The average life span after onset of dementia is eight years. Currently, 50% of the 1.8 million persons in nursing homes in the United States suffer from AD or other cognitive disorders (Wall Street Journal, 1998).

V. EFFECT OF MEDICATIONS ON TASTE AND SMELL

Adverse drug reactions including chemosensory disorders occur at a higher rate in older individuals (Straand and Rokstad, 1999; Atkin and Shenfield, 1995; Stricker et al., 1996). Both clinical reports and experimental studies have reported adverse taste and smell side effects from medications. Many medications have unpleasant tastes or odors of their own; in addition, drugs can alter the sensations of other chemosensory stimuli including foods and beverages (Schiffman et al., 1983; Schiffman et al., 1999a,b,c; Zervakis et al., 2000; Schiffman et al., 2000a,b,c). The exaggerated burden of drug-induced chemosensory disorders in a geriatric population is illustrated by a study of 87 persons with taste loss due to terbinafine and 362 controls on terbinafine without taste loss (Stricker et al., 1996). Patients 65 years of age or more were 4.4 times more likely to develop taste loss to terbinafine than those younger than 35 years of age. Elevated frequency of chemosensory disorders in the elderly is also due to the disproportionate use of prescription and nonprescription drugs by older individuals. An overview of data on prescription drug usage in the United States and United Kingdom indicates that the elderly account for 25–39% of the prescription drug costs and up to 40% of nonprescription drugs dispensed; yet the elderly account for only 10–18% of the population (Atkin et al., 1999). Community-dwelling elderly over the age of 65 take an average of 2.9 to 3.7 medications (Lewis et al., 1993), and the number increases significantly to 7.2 drugs or more for elderly living in retirement and nursing homes (Ingrid K. Lewis, PharmD, personal communication). The elderly may be more susceptible to sensory side-effects of drugs due to the extensive age-related changes in physiology relevant to drug handling that occur in this population.

Adverse side effects involving taste and smell impairments have been reported for over 250 drugs although the percentage of patients affected by each drug is not well documented (Schiffman 1983; Schiffman 1997; Physicians' Desk Reference, 1995). No single drug class appears to cause complaints of adverse side effects out of proportion with its use, but complaints occur more frequently with cardiovascular drugs, NSAIDS, and psychotropic agents due in part to their high prescription rate (Atkin et al., 1999). Smith and Burtner (1994) found that 47.5% of the 131 most frequently prescribed medications for 1992, as measured by IMS America's National Prescription Audit, caused altered taste such as medication taste, unusual taste, peculiar taste, bad taste, taste perversion, metallic taste, changes in taste, and decreased taste. Furthermore, the absolute number of drugs taken by an individual patient is one of the most important predictors of adverse drug reactions (Dawling and Crome, 1989).

Neither the sites of action nor the mechanisms by which medications induce clinical taste and smell disorders is well understood. However, medications can impact taste or smell perception at several levels of the nervous system including the peripheral receptors, chemosensory neural pathways, and/or the brainstem and brain. Drugs can produce tastes of their own when they are secreted into the saliva (or build up over time in taste tissues) at concentrations that are greater than taste detection thresholds. Extensive research has shown that drugs are secreted into the saliva (Mucklow *et al.*, 1978; Kragh-Sorensen and Larsen, 1980; Paxton and Donald, 1980; Anavekar *et al.*, 1978; Levy *et al.*, 1980), and salivary levels of many drugs are high enough to exert adverse effects on taste sensations either by modifying taste transduction mechanisms or by producing a taste of their own.

Diffusion of drugs from lingual blood vessels can also activate taste receptors on the basolateral side of taste receptor cells. The fact that compounds circulating in the blood can produce tastes and smells has been well known for many years (Nor et al., 1996; Matsuyama and Tomita, 1986). Intravenous taste has been used medically to measure human blood circulation time. For example, 5 ml of bitter-tasting decholin (20% dehydrocholic acid) is injected into the right cubital vein over a 10 sec period, and the latent time to produce a taste is measured (Matsuyama and Tomita, 1986). Drugs can also diffuse into the nasal mucus and potentially disrupt odor perception. The concentrations of numerous drugs have been measured in nasal secretions (Melon and Reginster, 1976; Giebel et al., 1979), and the levels can be higher than that in the plasma (Tominack et al., 1988; Jaehde et al., 1995).

Schiffman and colleagues (Schiffman et al., 1999a,b,c; Zervakis et al., 2000; Schiffman et al., 2000a,b,c) have performed a series of studies to quantify the effect of topical application of 62 different drugs to the tongue to simulate the situation in which the drug is secreted into saliva. These 62 drugs had been shown previously to provoke taste complaints in clinical settings. Both threshold and suprathreshold studies in elderly subjects and young controls were performed. At a concentration four times higher than the detection threshold, subjects also rated the taste quality of the drug using 14 adjectives: overall intensity, sweet, sour, salty, bitter, metallic, cooling, hot, spicy, burning, anesthetic, astringent, medicinal, and minty/menthol. The perceived intensities of suprathreshold concentrations of NaCl, KCl, CaCl₂, sucrose, quinine HCl, citric acid, capsaicin (pungent), n-ethyl-p-menthane-3-carboxamide or WS-3 (menthol-like), and FeSO₄ (metallic) were measured before and after topical application of a weak concentration of each drug. Results of these studies along with taste complaints from clinical reports are given in Table XIII.

TABLE XIII

DRUGS THAT INTERFERE WITH THE TASTE SYSTEM

Classification/	Source	Taste complaint	Threshold	Effect	of topic	al applik	cation on	intensity	or major	Threshold Effect of topical application on intensity or major taste quality	,	
drug		or description		NaCl	KCI	CaCl ₂	NaCl KCl CaCl ₂ Sucrose QHCl	Онсі		Citric Capsaicin WS-3 FeSO ₄ Acid	WS-3	FeSO ₄
AIDS- & HIV-rela	ted therapeutic drugs:	AIDS- & HIV-related therapeutic drugs: nucleosides and others										
Didanosine	PDR (Videx)	Taste perversion	24.0 ± 4.22 mM (Bitter)		\rightarrow	⇒					⇔	
Lamivudine			4.36 ± 1.37 mM (Bitter)		\Rightarrow	\Rightarrow				\rightarrow	\rightarrow	
Nevirapine			n/a	\rightarrow				⇒				
Stavudine			5.99 ± 1.44 mM (Bitter)		=	⇒						
Zalcitabine	PDR (Hivid)	Decreased or loss of taste, taste perversion										
Zidovudine	PDR (Retrovir, Retrovir IV)	Taste perversion	2.15 ± 0.60 mM (Bitter)		\Rightarrow					\rightarrow		
AIDS- & HIV-rela	AIDS- & HIV-related therapeutic drugs: protease inhibitors	protease inhibitors										
Indinavir	PDR (Crixivan)	Taste perversion	0.237 ± 0.013 mM (Bitter)					⇒	\rightarrow	=		\Rightarrow

TABLE XIII (continued)
DRUGS THAT INTERFERE WITH THE TASTE SYSTEM

Classification/	Source	Taste complaint	Threshold	Effect	of topica	ıl applic	ation on i	ntensity	or major	Threshold Effect of topical application on intensity or major taste quality		
विगष्ट		or description		NaCl	KCI (CaCl ₂	Sucrose	ОНСІ	Citric Acid	NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 FeSO ₂ Acid	WS-3	FeSO,
Nelfinavir			n/a				⇒	⇒			\rightarrow	
Ritonavir	PDR (Norvir)	Taste loss, taste perversion, taste abnormal	0.0702 ± 0.039 mM (Bitter)	\rightarrow	\rightarrow							
Saquinavir mesylate	PDR (Invirase)	Taste altered	0.0029 ± 0.0004 mM (Bitter)	→				⇒ qua	⇐	(
Amebicides & anthelmintics	thelmintics											
Metronidazole	1. Strassman et al., 1970 2. Griffin, 1992 3. PDR (Metrogel- vaginal, Protostat, Flagyl IV, Flagyl)	Sour or bitter taste in mouth, dryness of mouth Taste abnormal, taste perversion Sharp, unpleasant metallic taste										
Niclosamide	PDR (Niclocide)	Bad taste in mouth										
Niridazole	Prata, 1969	Bitter sensation in mouth										

TABLE XIII (continued) drugs that interfere with the taste system

Classification/	Source	t t	shold Et	ffect of to	pical appli	cation on	intensity	or major	Threshold Effect of topical application on intensity or major taste quality	,	
arug		or description	Ź	aCI KC	NaCl KCl CaCl ₂ Sucrose QHCl	Sucrose	QHCI	Citric Acid	Capsaicin	WS-3 FeSO ₄	FeSO ₄
Anesthetics											
Benzocaine (ethyl aminobenzoate)	Von Skramlik, 1963	Hypogeusia especially to bitter									
Dibucaine HCl	Von Skramlik, 1963	Hypogeusia especially to bitter									
Euprocin	Von Skramlik, 1963	Hypogeusia especially to bitter									
Lidocaine	Yamada & Tomita, 1989	Hypogeusia & abnormal bitter sensation									
Procaine HCl (Novocain)	Von Skramlik, 1963	Hypogeusia especially to bitter									
Propofol	PDR (Diprivan)	Taste perversion									
Tropacocaine	Von Skramlik, 1963	Hypogeusia & abnormal bitter sensation									
Anticholesteremic & antilipidemics	& antilipidemics										
Cholestyramine	PDR (Questran, Questran Light)	Sour taste									

TABLE XIII (continued) drugs that interfere with the taste system

Classification/	Source	Taste complaint	Threshold	Threshold Effect of topical application on intensity or major taste quality	oical appli	cation on	intensity	or major	taste quality		
	į	nondineen io		NaCl KCl	CaCl ₂	Sucrose	QHCI	Citric Acid	NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 Acid	WS-3	FeSO ₄
Clofibrate	Henkin, 1971	Hypogeusia				:					
Fluvastatin sodium	PDR (Lescol)	Alteration of taste									
Gemfibrozil	PDR (Lopid)	Taste perversion	n/a	⇒							←
Lovastatin	PDR (Mevacor)	Dysgeusia, alteration of taste									
Pravastatin sodium	PDR (Pravachol)	Alteration of taste									
Probucol	PDR (Lorelco)	Diminished sense of taste									
Simvastatin	PDR (Zocor)	Alteration of taste									
Anticoagulants											
Phenindione	Scott, 1960	Burning sensation on tongue & local sensitivity of the taste buds									
Antihistamines											
Chlorpheniramine Schiffman, 1983 Maleate	Schiffman, 1983		0.085 ± 0.02 mM (Bitter)							\Rightarrow	

Classification/	Source	Taste complaint	Threshold	Effect o	f topica	ıl applic	ation on i	ntensity	or majo	Threshold Effect of topical application on intensity or major taste quality	_	
drug		or description		NaCl	KCI (CaCl ₂	NaCl KCl CaCl ₂ Sucrose QHCl	ОНСІ	Citric Acid	Citric Capsaicin WS-3 FeSO ₄ Acid	WS-3	FeSO ₄
Loratadine	PDR (Claritin)	Altered taste										
Terfenadine & pseudoephedrine	PDR (Seldane-D)	Taste alterations	n/a			=						
Antimicrobial agents	uts											
Amphotericin B	Rollin, 1978	Hypogeusia or ageusia w/ occasional phantogeusia										
Ampicillin	Jaffe, 1970	Hypogeusia	1.458 ± 0.392 mM (Bitter)	⇒		⇒			¢ bitter		=	
Atovaquone	PDR (Mepron)	Taste perversion	n/a							⇒		
Aztreonam	PDR (Azactam)	Altered taste										
Bleomycin	Soni & Chatterji, 1985	Taste loss										
Carbenicillin Indanyl sodium	PDR (Geocillin)	Bad taste										
Cefamandole	Hodgson, 1981	Bad taste in mouth										

TABLE XIII (continued) drugs that interfere with the taste system

		DRUGS I	HAI INTERFER	DRUGS THAT INTERFERE WITH THE TASTE SYSTEM	IE SYSTEM					
Classification/	Source	Taste complaint	Threshold	Effect of topical application on intensity or major taste quality	al application	on intensity	or major	taste quality		
0		mondingen to		NaCl KCl CaCl ₂ Sucrose	CaCl ₂ Sucr	se QHCI	Citric Acid	Capsaicin	WS-3 FeSO ₄	FeSO ₄
Cefpodoxime proxetil	PDR (Vantin)	Taste alteration								
Ceftriaxone sodium	PDR (Rocephin)	Dysgeusia								
Cefuroxime axetil PDR (Ceftin)	PDR (Ceftin)	Poor taste of drug								
Cinoxacin	PDR (Cinobac)	Perverse taste								
Ciprofloxacin	1. Griffin, 1992 2. PDR (Cipro, Cipro IV, Ciloxan)	1. Taste altered 2. Bad taste								
Clarithromycin	PDR (Biaxin)	Abnormal taste, taste perversion								
Clindamycin phosphate	PDR (Cleocin phosphate)	Unpleasant or metallic taste								
Clofazimine	PDR (Lamprene)	Taste disorder								
Dapsone			n/a	\Rightarrow			\Rightarrow			
Enoxacin	PDR (Penetrex)	Unusual taste	0.040 ± 0.014 mM; (Metallic, bitter)		\rightarrow		⇒			

TABLE XIII (continued) drugs that interfere with the taste system

Classification/	Source	Taste complaint	Threshold	Threshold Effect of topical application on intensity or major taste quality	
drug		or description		NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 FeSO ₄ Acid	.3 FeSO ₄
Ethambutol 2HCl	Rollin, 1978	Metallic phantogeusia	0.247 ± 0.055 mM; (Bitter)	↓ ↓ ↓ bitter	
Griseofulvin	Fogan, 1971	Decreased taste acuity	n/a		
Imipenem- Cilastatin sodium	PDR (Primaxin IM, Primaxin IV)	Taste perversion			
Lincomycin	Henkin, 1971	Hypogeusia			
Lomefloxacin HCl	PDR (Maxaquin)	Taste perversion	0.379 ± 0.102 mM (Bitter)	←	
Mezlocillin sodium	PDR (Mezlin)	Abnormal taste sensation			
Norfloxacin	PDR (Chibroxin, Noroxin)	Bitter taste			
Ofloxacin	PDR (Floxin, Floxin IV)	Dysgeusia, disturbance of taste	0.387 ± 0.155 mM; (Bitter)	←	

TABLE XIII (continued)
DRUGS THAT INTERFERE WITH THE TASTE SYSTEM

Classification/	Source	Taste complaint	Threshold Effect of topical application on intensity or major taste quality	Effect	f topic	al applic	ation on	intensity	or major	taste quality		
g n		nondingen io		NaCl	KCI	CaCl ₂	NaCl KCl CaCl ₂ Sucrose QHCl	QHCI	Citric Acid	Citric Capsaicin WS-3 FeSO ₄ Acid	WS-3	FeSO ₄
Pentamidine Isethionate	PDR 1a. (NebuPent) 1b. (Pentam 300)	1a. Bad (metallic) taste, loss of taste 1b. Bad taste in mouth	0.062 ± 0.014 mM; (Bitter)	\rightarrow	⇒	⇒						
Piperacillin & tazobactam sodium	PDR (Zosyn)	Taste perversion										
Pyrimethamine			n/a			⇒						
Rifabutin	PDR (Mycobutin)	Taste perversion										
Sulfamethoxazole			0.639 ± 0.119 mM (Sour, bitter)			↓ bitter	←					
Trimethoprim			0.264 ± 0.118 mM (Bitter)									
Tetracyclines	1. Magnasco & Magnasco, 1985 2. Soni & Chatterji, 1976	I. Intense, offensive metallic taste Produces symptoms of taste alteration	0.061 ± 0.010 mM (Sour-bitter)		\rightarrow	↑ bitter						

TABLE XIII (continued) DRUGS THAT INTERFERE WITH THE TASTE SYSTEM

Classification/	Source	nt	hreshold	Threshold Effect of topical application on intensity or major taste quality	ajor taste quality	,	
gnin		or description		NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 FeSO ₄ Acid	c Capsaicin	WS-3 F	eSO4
Ticarcillin disodium and clavulanate potassium	PDR (Timentin)	Disturbance of taste					
Tyrothricin	Seydell & McKnight, 1948	Ageusia					
Antiproliferative, i	Antiproliferative, including immunosuppressive agents	vressive agents					
Aldesleukin	PDR (Proleukin)	Taste disorder					
Azathioprine	Rollin, 1978	Hypogeusia or ageusia with occasional phantogeusia					
Carmustine	Reyes et al., 1973	Dry mouth, metallic taste					
Cisplatin	Schiffman, 1991	Dysgeusia					
Carboplatin	PDR (Paraplatin)	Change in taste					
Doxorubicin and methotrexate	 Guthrie & Way, 1974 Duhra & Foulds, 1988 	Altered taste sensation Loss of taste sensation to all foods					

Classification/	Source	Taste complaint	Threshold	Threshold Effect of topical application on intensity or major taste quality	tion on intensity or	major taste q	ıality	
o 3		nordinasa io		NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 Acid	ucrose QHCl C	itric Capsai scid	cin WS-3	FeSO ₄
Fluorouracil	PDR (Efudex)	Medicinal taste						
Interferon alfa-2a (recombinant)	PDR (Roferon-A)	Change in taste						
Interferon alfa-2b PDR (Intron) (recombinant)	PDR (Intron)	Taste alteration						
Levamisole HCl (immunomodulator)	PDR (Ergamisol)	Taste perversion	0.449 ± 0.148 mM (Bitter)	(←		
Vincristine sulfate	State et al., 1977	Decrease in number and content of foliate & vallate taste buds						
Antirheumatic, anti	arthritic, analgesic-a	Antirheumatic, antiarthritic, analgesic-antipyretic, and anti-inflammatory	lammatory					
Auranofin	PDR (Ridaura)	Dysgeusia						
Aurothioglucose	PDR (Solganol)	Metallic taste						
Benoxaprofen	Griffin, 1992	Taste loss, taste abnormal, taste perversion						
Butorphanol tartrate	PDR (Stadol, Stadol NS)	Unpleasant taste						

Classification/	Source	Taste complaint	Threshold Effect of topical application on intensity or major taste quality	Effect of to	pical appl	ication on	intensity o	or major	taste quality	,	
drug		or description		NaCl KCl CaCl ₂ Sucrose	CaCl ₂	Sucrose	QHCI	Citric Acid	Capsaicin	WS-3 FeSO ₄	FeSO_4
Choline magnesium trisalicylate	PDR (Trilisate)	Dysgeusia									
Colchicine	Beidler & Smallman, 1965	Hypogeusia									
Dexamethasone	1. Fehm- Wolfsdorf et al., 1989 2. PDR (Decadron)	Less sensitive to detection of differences Taste disorder	0.0902 ± 0.024 mM (Bitter)		⇒						
Diclofenac potassium/ diclofenac sodium	PDR (Cataflam/Voltaren)	Taste disorder	1.008 ± 0.220 mM (Bitter)			\rightarrow		⇒	⇒	←	
Dimethyl sulfoxide	PDR (Rimso-50)	Garlic-like taste									
Etodolac	PDR (Lodine)	Taste perversion									
Fenoprofen calcium	PDR (Nalfon)	Metallic taste	1.111 ± 0.388 mM (Metallic, sour)	our)							⇒
Flurbiprofen	PDR (Ansaid)	Changes in taste									

		DIVOGS III	DROUGH HALL INTERVENE WITH THE LASTE STATEM	C WIII	INE IAS	153131	EM					
Classification/	Source	Taste complaint	Threshold	Effect	of topic	al appli	cation on	intensity	or major	Threshold Effect of topical application on intensity or major taste quality		
0		nondrasa 10	i	NaCl	KCI	CaCl ₂	NaCl KCl CaCl ₂ Sucrose QHCl	QHCI	Citric Acid	Capsaicin WS-3	WS-3	FeSO_4
 Gold Gold sodium Chiomalate 	 Rollin, 1978 PDR Myochrysine) 	Metallic phantogeusia Metallic taste										
Hydrocortisone	Fehm-Wolfsdorf et al., 1989	Less sensitive to detection of differences; higher detection thresholds	0.0928 ± 0.02 mM (Bitter)									
Hydromorphone HCl	PDR (Dilaudid, Dilaudid-HP)	Taste alterations										
Ibuprofen			n/a								† bitter	
Ketoprofen	PDR (Orudis)	Taste perversion	n/a						↑ bitter			
Ketorolac Tromethamine	PDR (Toradol)	Abnormal taste										
Morphine sulfate	PDR (MS Contin, MSIR, Oramorph SR)	Taste alterations										
Nabumetone	PDR (Relafen)	Taste disorder	n/a	⇒	⇒	∜ sour	\rightarrow					
Nalbuphine HCl	PDR (Nubain)	Bitter taste										

TABLE XIII (continued) DRUGS THAT INTERFERE WITH THE TASTE SYSTEM

Classification/	Source	Taste complaint	Threshold	Effect of to	pical appli	cation on	ntensity	or major	Threshold Effect of topical application on intensity or major taste quality		
drug		or description		NaCl KC	NaCl KCl CaCl ₂ Sucrose QHCl	Sucrose	QHCI	Citric Acid	Capsaicin WS-3 FeSO ₄	WS-3	FeSO ₄
Oxaprozin	PDR (Daypro)	Alteration in taste									
D-penicillamine & penicillamine	1. Sternlieb & Sheinberg, 1964 2. Keiser et al., 1968 3. Griffin, 1992 4. PDR (Cuprimine, Depen)	Hypogeusia Hypogeusia Taste loss, taste abnormal Blunting, diminution, or total loss of taste perception									
Pentazocine lactate	PDR (Talwin)	Taste alteration									
Phenylbutazone	Rollin, 1978	Ageusia									
Piroxicam	Griffin, 1992	Taste abnormal									
Salicylates	 Hellekant & Gopal, 1975 Bourliere et al., 1959 	Hypogeusia or ageusia Lower DT for quinine sulfate									
Sulindac	PDR (Clinoril)	Ageusia, metallic or bitter taste	n/a	\rightarrow							
Sumatriptan succinate	PDR (Imitrex)	Disturbance of taste									
5-Thiopyridoxine	Huskisson et al., 1980	Ageusia									

										i
Classification/	Source	Taste complaint	Threshold	Threshold Effect of topical application on intensity or major taste quality	l applicatic	n on inten	sity or maj	or taste quality	y	
0		nondineen to		NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 FeSO ₄ Acid	2aCl ₂ Suc	rose QH	Cl Citric Acid	Capsaicin	WS-3	FeSO_4
Antiseptics								•		
Hexetidine	Plath & Otten, 1969	Salty and burning tastes								
Antispasmodics, Ir.	Antispasmodics, Irritable Bowel Syndrome	ne								
Dicyclomine HCl PDR (Bentyl)	PDR (Bentyl)	Taste loss	0.0354 ± 0.010 mM; (Bitter)	⇒	⇒					
Oxybutynin	Griffin, 1992	Taste altered								
Phenobarbital + Hyoscyamine SO_4 + atropine SO_4 + SO_4 + $Scopolamine$ Hydrobromide	PDR (Donnatal, & Donnatal Extentabs)	Loss of taste sense								
Antithyroid agents										
Carbimazole	Erikssen et al., 1975	Ageusia								
Methimazole	 Erikssen et al., 1975 Hallman & Hurst, 1953 PDR (Tapazole) 	 Ageusia Ageusia Loss of taste 	2.111 ± 1.07 mM; (Bitter)							

TABLE XIII (continued) drugs that interfere with the taste system

Classification/	Source	Ħ	Threshold	Effect of	topical	applica	ition on	ntensity	or major	Threshold Effect of topical application on intensity or major taste quality	,	
drug		or description		NaCl KCl CaCl ₂ Sucrose QHCl	בו כי	ICI ₂	Sucrose	QHCI	Citric Acid	Citric Capsaicin WS-3 FeSO ₄ Acid	WS-3	FeSO ₄
Methylthiouracil	Schneeberg, 1952	Dysgeusia, ageusia								¥		
Propylthiouracil	Grossman, 1953	Hypogeusia										
Thiouracil	Rollin, 1978	Hypogeusia or ageusia with occasional phantogeusia										
Antiulcerative												
Clidinium bromide	PDR (Quarzan)	Loss of taste										
Famotidine	PDR (Pepcid)	Taste disorder										
Glycopyrrolate	PDR (Robinul)	Loss of taste										
Hyoscyamine sulfate	PDR (Levsin/Levsinex)	Loss of taste										
Mesalamine	PDR (Asacol)	Taste perversion										
Misoprostol	PDR (Cytotec)	Abnormal taste										
Omeprazole	PDR (Prilosec)	Taste perversion										
Propantheline bromide	PDR (Pro-Banthine)	Loss of sense of taste										

TABLE XIII (continued)
DRUGS THAT INTERFERE WITH THE TASTE SYSTEM

		DRUGO IN	DRUGS THAT INTERFERE WITH THE TASTE STATEM	WILL IN	EIASIEST	SIEM					
Classification/	Source	Taste complaint	Threshold	Effect of	topical app	dication on	intensity	or major	Threshold Effect of topical application on intensity or major taste quality	,	
0		or description		NaCl K	CCI CaCI ₂	NaCl KCl CaCl ₂ Sucrose QHCl	Онсі	Citric Acid	Citric Capsaicin WS-3 FeSO ₄ Acid	WS-3	FeSO ₄
Sulfasalazine	Rollin, 1978	Hypogeusia or ageusia with occasional phantogeusia	e			i		i	:	į	
Antiviral											
Acyclovir	PDR (Zovirax)	Medication taste	n/a	Ē	↓ bitter				\Rightarrow		
Foscarnet sodium	PDR (Foscavir)	Taste perversion									
Idoxuridine	Simpson, 1975	Unpleasant taste									
Interferon alfa-n3	PDR (Alferon)	Strange taste in mouth	_								
Interferon beta-1b	PDR (Betaseron)	Taste loss; taste perversion									
Rimantadine HCl	PDR (Flumadine)	Taste loss/change									
Agents for dental hygiene	sygiene										

Loss of taste

Thumfart *et al.*, 1980

Sodium fluoride

Bitter aftertaste, taste perversion, bad taste

PDR (Gastrocrom, Intal, Nasalcrom)

Cromolyn sodium

Unusual taste

PDR (Tornalate)

Bitolterol mesylate

TABIE VIII (continued)

		TAI DRUGS THAT II	SLE XI	TABLE XIII (continued) Drugs that interfere with the taste system
Classification/	Source	nt	reshold	Threshold Effect of topical application on intensity or major taste quality
drug		or description		NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 FeSO ₄ Acid
Sodium lauryl sulfate	1. Rollin, 1978 2. De-Simone et al., 1980	Hypogeusia or ageusia with occasional phantogeusia Hypogeusia Hypogeusia		
Chlorhexidine digluconate mouthrinses	1. Lang <i>et al.</i> , 1988 2. PDR (Peridex)	Short-lasting taste impairment for salty taste Alteration of taste perception		
Bronchodilators an	Bronchodilators and antiasthmatic drugs	S		
Albuterol sulfate	PDR (Ventolin, Volmax, Proventil)	Unusual taste		
Beclomethasone dipropionate	1. Griffin, 1992 2. PDR (Beconase)	 Taste loss, taste perversion Loss of taste 		

Classification/	Source	Taste complaint	Threshold	Threshold Effect of topical application on intensity or major taste quality
3		nondinasa io		NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 FeSO ₄ Acid
Ephedrine HCI + phenobarbitol + potassium iodide + theophylline calcium salicylate	PDR (Quadrinal)	Unpleasant brassy taste		
Flunisolide	PDR (AeroBid, AeroBid-M, Nasalide)	Unpleasant taste, loss of taste		
Metaproterenol sulfate	PDR (Metaproterenol Arm-a-Med, Alupent, Metaprel)	Bad taste		
Nedocromil	PDR (Tilade)	Unpleasant taste		
Pirbuterol acetate inhalation aerosol	PDR (Maxair autohaler & inhaler)	Taste changes		
Terbutaline sulfate	PDR (Brethaire)	Unusual taste		
Diuretics, antiarrh	ythmic, antihypertensi	Diuretics, antiarrhythmic, antihypertensive, and antifibrillatory agents	agents	

1. Dahl *et al.*, 1984 1. Decreased NaCl 2. PDR (Diamox, threshold Diamox 2. Taste alteration Sequels)

Acetazolamide

Classification/	Source	Taste complaint	Threshold	Threshold Effect of topical application on intensity or major taste quality	cal applic	ation on i	ntensity	or major	taste quality		
drug		or description	ļ	NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 FeSO ₄ Acid	CaCl ₂	Sucrose	ОНСІ	Citric Acid	Capsaicin	WS-3	FeSO ₄
Adenosine	PDR (Adenocard)	Metallic taste									
Amiloride and its analogs	PDR (Moduretic)	Bad taste	Bitter	\Rightarrow		⇒					
Amiodarone HCl	PDR (Cordarone)	Abnormal taste									
Amlodipine besylate	PDR (Norvasc)	Taste perversion									
Benazepril HCl & hydro- chlorothiazide	PDR (Lotensin HCT)	Taste perversion									
Betaxolol HCI	PDR (Kerlone)	Abnormal taste, taste loss									
Bisoprolol fumarate & bisoprolol pisoprolol fumarate with hydrochlorothiazid	PDR (Zebeta, Ziac) le	Taste abnormalities									

Classification/	Source	Taste complaint	Threshold Effect of topical application on intensity or major taste quality	Effect of	f topical app	olication on	intensity	or major	r taste qualit		
Q.		nordinasa io		NaCl	KCI CaCI,	Sucrose	QHCI	Citric Acid	NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 FeSO ₄	WS-3	FeSO ₄
Captopril & Captopril/hydro- chlorothiazide	1. McFate Smith et al., 1984 2. McNeil et al., 1979 3. Vlasses & Ferguson, 1979 4. Griffin, 1992 5. PDR (Capoten, Capozide)	Taste disturbance Dysgeusia Ageusia Tase loss, taste abnormal, taste perversion Diminution or loss in taste perception, dysgeusia	0.132 ± 0.150 mM (Sour, bitter)	_	\rightarrow	\rightarrow					
Clonidine	PDR (Catapres-TTS)	Change in taste									
Diazoxide	1. Schiffman, 1983 1. — 2. PDR 2. Al (Hyperstat IV)	1. — 2. Alteration of taste									
Diltiazem	1. Berman, 1985 2. PDR (Cardizem, Cardizem CD & SR)	 Hypogeusia, possible dysgeusia Dysgeusia 	0.142 ± 0.03 mM (Bitter)		∯ purn	⊭		=		\Rightarrow	
Doxazosin mesylate	PDR (Cardura)	Taste perversion									

TABLE XIII (continued) drugs that interfere with the taste system

							I				
Classification/	Source	Taste complaint	Threshold	Threshold Effect of topical application on intensity or major taste quality	cal appli	cation on	intensity	or major	taste quality		
drug		or description		NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 FeSO ₄ Acid	CaCl ₂	Sucrose	Онсі	Citric Acid	Capsaicin	WS-3	FeSO ₄
1. Enalapril 2. Enalapril maleate 3. Enalaprilat	1a. McFate-Smith 1a. Taste et al., 1984 distur 1b. Griffin, 1992 (loss 2,3. PDR (Vasotec, altera Vasotec IV) taste Vasotec IV) taste taste) taste)	Taste disturbance (loss & alteration) Ib. Taste loss, taste abnormal, taste perversion Z,3. Taste alteration	0.107 ± 0.03 mM (sour)					⇒			
Esmolol	PDR (Brevibloc)	Taste perversion									
Ethacrynic acid	Gifford, 1970	Metallic taste	0.1859 ± 0.056 mM (Bitter)					⇐			=
Flecainide acetate	Flecainide acetate PDR (Tambocor) Change in taste	Change in taste									
Fosinopril sodium PDR (Monopril)	PDR (Monopril)	Taste disturbance									
Guanfacine HCl	PDR (Tenex)	1a. Taste perversion, alterations in taste									
Hydro- chlorothiazide	Griffin, 1992	Taste loss, taste abnormal, taste perversion	n/a		↑ bitter	⇒					⇒

TABLE XIII (continued)
DRUGS THAT INTERFERE WITH THE TASTE SYSTEM

Classification/	Source	Taste complaint	Threshold	Effect	of topic	al appli	cation on	intensity	or major	Threshold Effect of topical application on intensity or major taste quality	,	
0		nondineen to		NaCl	KCI	CaCl ₂	NaCl KCl CaCl ₂ Sucrose QHCl	ОНСІ	Citric Acid	Citric Capsaicin WS-3 FeSO ₄ Acid	WS-3	FeSO ₄
Labetalol HCI	PDR (Trandate, Normodyne)	Taste distortion	0.182 ± 0.04 mM (Bitter)			\rightarrow		→		←	:	
Metolazone	PDR (Mykrox)	Bitter taste										
Mexiletine HCl	PDR (Mexitil)	Altered taste	0.463 ± 0.34 mM (Bitter)	⇒		\rightarrow	\rightarrow	\rightarrow		\Rightarrow	←	⇒
Moricizine HCl	PDR (Ethmozine)	Bitter taste										
Nifedipine	1. Levinson & Kennedy, 1985 2. PDR (Procardia XL)	 Dysgeusia Taste perversion 	n/a									
Procainamide HCl	PDR (Procan SR)	Bitter taste	0.438 ± 0.10 mM (Bitter)		\rightarrow	\rightarrow				(
Propafenone HCl	PDR (Rythmol)	Unusual taste	0.048 ± 0.03 mM (Bitter)		⇒			⇒	⇒			
Propranolol	Griffin, 1992	Taste loss, taste abnormal, taste perversion	0.209 ± 0.07 mM (Bitter)							←		

TABLE XIII (continued)	DRUGS THAT INTERFERE WITH THE TASTE SYSTEM
------------------------	--

Classification/	Source	nt	Threshold Effect of topical application on intensity or major taste quality
drug		or description	NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 FeSO ₄ Acid
Ramipril	PDR (Altace)	Taste disturbance	
Spironolactone	Griffin, 1992	Taste loss	
Tocainide HCl	PDR (Tonocard)	Taste perversion	
Triamterene/ Hydrochlorothiazide	PDR (Maxzide) le	Taste alteration	
Hyper- & hypoglycemic drugs	emic drugs		
Diazoxide	PDR (Proglycem)	Transient loss of taste	
Glipizide	Lahon & Mann, 1973	Taste change	
Phenformin and derivatives	 Rollin, 1978 Ferguson et al., 1961 	 Metallic phantogeusia Dysgeusia 	
Hypnotics & sedatives	ives		
Estazolam	PDR (ProSom)	Perverse taste	
Flurazepam HCl	1. Griffin, 1992 2. PDR (Dalmane)	 Taste abnormal, taste perversion Bitter taste 	

TABLE XIII (continued) drugs that interfere with the taste system

							:					
Classification/	Source	Taste complaint	Threshold	Effect	of topic	al appli	cation on	intensity	or majo	Threshold Effect of topical application on intensity or major taste quality	_	
0		nordinasan to		NaCl	KCI	CaCl ₂	Sucrose	QHCI	Citric Acid	NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 FeSO ₄ Acid	WS-3	FeSO ₄
Midazolam HCl	PDR (Versed)	Acid taste					:					
Prochlorperazine			0.103 ± 0.045 mM (Bitter)						=			
Promethazine			0.079 ± 0.025 mM (Bitter)	⇒	\rightarrow	\Rightarrow	⇒		↑ bitter			
Quazepam	PDR (Doral)	Abnormal taste perception										
Triazolam	1. Griffin, 1992 2. PDR (Halcion)	Taste loss, taste abnormal, taste perversion Taste alterations										
Zolpidem tartrate	PDR (Ambien)	Taste perversion										
Zoplicone	Griffin, 1992	Taste loss, taste abnormal, taste perversion,										

TABLE XIII (continued) drugs that interfere with the taste system

Classification/	Source	Taste complaint	Threshold	Effect	of topica	ıl applic	ation on i	ntensity	or major	Threshold Effect of topical application on intensity or major taste quality	,	
gmb		or description		NaCl	KCI (CaCl ₂	NaCl KCl CaCl ₂ Sucrose QHCl	QHCI	Citric Acid	Capsaicin	WS-3 FeSO ₄	FeSO ₄
Muscle relaxants a	nd drugs for treatmer	Muscle relaxants and drugs for treatment of Parkinson's disease	a,									
Baclofen	1. Rollin, 1978 2. PDR (Lioresal, Lioresal Intrathecal)	Hypogeusia, ageusia with occasional phantogeusia Taste disorder, decreased taste	3.50 ± 0.723 mM (Bitter- metallic)								\rightarrow	
Chlormezanone	Rollin, 1978	Hypogeusia or ageusia with occasional phantogeusia										
Cyclobenzaprine HCl	PDR (Flexeril)	Ageusia, unpleasant taste	0.349 ± 0.156 mM (Bitter)	⇒	⇒	⇒	\Rightarrow			(
Dantrolene sodium	PDR (Dantrium)	Alteration of taste										
Levodopa	1. Siegfried & Zumstein, 1971 2. PDR (Dopar, Larodopa)	Ageusia followed by dysgeusia Bitter taste										
Methocarbamol	PDR (Robaxin)	Metallic taste										

TABLE XIII (continued)
DRUGS THAT INTERFERE WITH THE TASTE SYSTEM

Classification/	Source	Taste complaint	Threshold	Effect	of topi	cal appli	cation on	intensity	or major	Effect of topical application on intensity or major taste quality	,	
a j		nordingen to		NaCl	KCI	CaCl ₂	Sucrose	QHCI	Citric Acid	NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 FeSO ₄ Acid	WS-3	FeSO ₄
Pergolide mesylate PDR (Permax)	PDR (Permax)	Taste perversion										
Selegiline HCI	PDR (Eldepryl)	Taste disturbance										
Psychopharmacole	Psychopharmacologic including antiepileptic	lleptic										
Alprazolam	PDR (Xanax)	Taste alterations										
Amitriptyline HCl	PDR (Elavil, Endep)	Ageusia, peculiar taste	0.155 ± 0.042 mM (Bitter)	\Rightarrow	\Rightarrow	\Rightarrow	⇒	⇒	⇒	⇒	\Rightarrow	
Amoxapine	PDR (Asendin)	Peculiar taste										
Buspirone HCI	PDR (BuSpar)	Altered taste	0.269 ± 0.147 mM (Bitter)			↑ bitter	\rightarrow	⇒		⇐		
Carbamazepine	Halbreich, 1974	Higher thresholds, altered taste										
Chlordiazepoxide & Amitriptyline HCl	PDR (Limbitrol)	Peculiar taste										
Clomipramine HCl	PDR (Anafranil)	Taste loss, taste perversion	0.122 ± 0.028 mM (Bitter)	⇒	\Rightarrow	\Rightarrow	⇒	⇒		\rightarrow		

TABLE XIII (continued) drugs that interfere with the taste system

		2002										
Classification/	Source	Taste complaint	Threshold	Effect	of topic	al appli	cation on	intensity	or majo	Threshold Effect of topical application on intensity or major taste quality	,	
drug		or description		NaCl	KCI	CaCl ₂	Sucrose	QHCI	Citric Acid	NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 FeSO ₄ Acid	WS-3	FeSO ₄
Clozapine	PDR (Clozaril)	Bitter taste										
Desipramine HCl	Desipramine HCl PDR (Norpramin) Peculiar taste	Peculiar taste	0.161 ± 0.049 mM (Bitter)	\rightarrow					⇒	⇒	⇒	⇐
Doxepin HCl	PDR (Adapin, Sinequan)	Taste disturbances	0.143 ± 0.021 mM (Bitter)	\Rightarrow	⇒	⇒	⇒	⇒	⇒	\Rightarrow	\rightarrow	=
Felbamate	PDR (Felbatol)	Taste perversion										
Fluoxetine HCl	PDR (Prozac)	 Taste change, taste perversion 										
Imipramine HCl & imipramine pamoate	PDR (Tofranil)	Peculiar taste	0.125 ± 0.024 mM (Bitter)	\Rightarrow	⇒	⇒	\rightarrow	\rightarrow	⇒	\rightarrow	⇒	
Lithium carbonate	1. Bressler, 1980 2. Duffield, 1973 3. PDR (Eskalith, Lithium Carbonate, Lithionate/ Lithionate/ Lithotabs)	Strange, unpleasant taste associated with food Metallic and salty taste, dysgeusia/ taste distortion										

Classification/	Source	Taste complaint	Threshold	Effect	of topic	al applic	cation on	intensity	or majo	Threshold Effect of topical application on intensity or major taste quality	λ.	
20 1		or description		NaCl	KCI	CaCl ₂	Sucrose	QНСІ	Citric Acid	NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 FeSO ₄	WS-3	FeSO ₄
Maprotiline HCl	PDR (Ludiomil)	Bitter taste										
Nortriptyline HCl	PDR (Pamelor)	Peculiar taste										
Paroxetine HCl	PDR (Paxil)	Taste perversion										
Perphenazine- amitriptyline HCI	PDR (Triavil, Etrafon)	Bitter-tasting (perphenizine), peculiar taste (amitriptyline HCI)										
Phenytoin	Schiffman, 1983	I	n/a								←	
Pimozide	PDR (Orap)	Taste change										
Protriptyline HCl	PDR (Vivactil)	Peculiar taste										
Psilocybin	Fischer <i>et al.</i> , 1965	Lower jnd's for Na saccharin										
Risperidone	PDR (Risperdal)	Bitter taste										
Sertraline HCl	PDR (Zoloft)	Taste perversion										
Trazodone HCI	PDR (Desyrel)	Bad taste in mouth										
Trifluoperazine	Fischer <i>et al.</i> , 1965	Larger difference thresholds for Na saccharin	0.065 ± 0.012 mM (Bitter)	⇒	⇒	⇒		\rightarrow	⇒			=

TABLE XIII (continued)
DRUGS THAT INTERFERE WITH THE TASTE SYSTEM

Classification/	Source	Ħ	Threshold Effect of topical application on intensity or major taste quality	ion on intensity	or majo	r taste quality		
drug		or description	NaCl KCl CaCl ₂ Sucrose QHCl	ucrose QHCI	Citric Acid	Capsaicin WS-3	WS-3	FeSO ₄
Trimipramine maleate	PDR (Surmontil)	Peculiar taste						
Venlafaxine HCl	PDR (Effexor)	Taste perversion						
Sympathomimetic drugs	88							
Amphetamine	1. Mata, 1963 2. PDR (Biphetamine)	1. Increased sensitivity to bitter taste & decreased sensitivity to sweet taste 2. Unpleasant taste						
Benzphetamine HCl	PDR (Didrex)	Unpleasant taste						
Dextroamphetamine- PDR (Dexedrine) sulfate		Unpleasant taste						
Fenfluramine HCl	PDR (Pondimin)	Bad taste						
Mazindol	PDR (Sanorex)	Unpleasant taste						
Methamphetamine HCl	PDR (Desoxyn)	Unpleasant taste						

Classification/	Source	Ħ	hreshold	Effect of t	opical appl	ication on	intensity	or major	Threshold Effect of topical application on intensity or major taste quality		
anın		or description		NaCl KC	NaCl KCl CaCl ₂ Sucrose QHCl	Sucrose	ОНСІ	Citric Acid	Capsaicin WS-3 FeSO ₄	WS-3	FeSO ₄
Phendimetrazine tartrate	PDR (Prelu-2)	Bitter taste, unpleasant taste									
Phentermine resin, Phentermine HCl	PDR (Ionamin, Adipex-P, Fastin)	Unpleasant taste									
Vasodilators											
Bamifylline HCl	Rollin, 1978	Bitter phantogeusia									
Dipyridamole	Goy et al., 1985	Dysgeusia									
Isosorbide mononitrate	PDR (Monoket)	Bitter taste									
Nitroglycerin patch	Ewing et al., 1989 Ageusia	Ageusia									
Oxyfedrine	 Rabe, 1970 Whittington & Raftery, 1980 	1. Ageusia 2. Ageusia									
Others (indication)											
Allopurinol (reduces serum & urinary uric acid)	1. Rollin, 1978 2. PDR (Zyloprim)	Metallic n phantogeusia Taste loss/ perversion	n/a								

Classification/	Source	 	Threshold Effect of topical application on intensity or major taste quality
gnp		or description	NaCl KCl CaCl ₂ Sucrose QHCl Citric Capsaicin WS-3 FeSO ₄ Acid
Antihemophilic factor (recombinant) (clotting factor- hemophilia)	PDR (Kogenate)	Unusual taste in mouth	
Antithrombin III (human) (antithrombin III deficiency)	PDR (Thrombate III)	Foul taste in mouth	
Bepridil HCl (antianginal/ antispasmodic)	PDR (Vascor)	Taste change	
Calcitonin (Paget's Disease, hypercalcemia, osteoporosis)	PDR (Miacalcin, Cibacalcin)	Salty taste	
Etidronate (hypercalcemia, antipsoriatic)	1. Jones <i>et al.</i> , 1975 2. PDR (Didronel)	1. Transient taste loss 2. Metallic or altered taste; loss of taste (usually transient)	
Etretinate (antipsoriatic)	PDR (Tegison)	Taste perversion	

Classification/	Source	1t	hreshold	Effect of 1	opical app	lication on	intensity	or major	Threshold Effect of topical application on intensity or major taste quality		
ล ก		or description		NaCl K	CI CaCl ₂	KCl CaCl ₂ Sucrose	QHCI	Citric Acid	Capsaicin	WS-3 FeSO ₄	FeSO ₄
Gadodiamide (diagnostic imaging product)	PDR (Omni-scan) Taste perversion	Taste perversion									
Germine monoacetate (Eaton-Lambert Syndrome)	Cherington, 1976	Unpleasant taste									
Granisetron HCl (antiemetic/ antinauseant)	PDR (Kytril)	Taste disorder									
Histamine phosphate (control for allergic skin testing)	PDR (Histatrol)	Metallic taste									
Iohexol (diagnostic imaging product)	PDR (Omnipaque) Taste perversion	Taste perversion									
Iron sorbitex (hematinic)	McCurdy, 1964	Metallic taste									
Leuprolide acetate (inhibits gonadotropin secretion/ prostatic cancer)	PDR (Lupron, Lupron Depot)	Taste disorders									

Classification/	Source	Taste complaint	Threshold	Effect of	topical ap	plication on	intensity	or major	Threshold Effect of topical application on intensity or major taste quality		
drug		or description		NaCl K	CI CaCI	NaCl KCl CaCl ₂ Sucrose	ОНСІ	Citric Acid	Capsaicin	WS-3 FeSO ₄	FeSO_4
Mesna (detoxifying agent)	PDR (Mesnex)	Bad taste in mouth									
Methazolamide (carbonic anhydrase inhibitor)	PDR (Neptazane)	Taste alteration									
Methylergonovine maleate (prevents post-partum hemorrhage)	PDR (Methergine) Foul taste	Foul taste									
Nicotine (smoking cessation)	PDR (Nicoderm, Nicotrol)	Taste perversion									
Nicotine polacrilex (smoking cessation	PDR (Nicorette)	Taste perception changes									
Pentoxifylline (blood viscosity modulator)	PDR (Trental)	Bad taste	0.930 ± 0.261 mM (bitter)	=	\Rightarrow						
Potassium iodide (expectorant)	PDR (Pima, SSKI) Metallic taste	Metallic taste									

TABLE XIII (continued)
DRUGS THAT INTERFERE WITH THE TASTE SYSTEM

Classification/	Source	=	reshold	Effect of	topical appl	ication on	ntensity	or major	Threshold Effect of topical application on intensity or major taste quality		
និក្សា		or description		NaC! K	NaCl KCl CaCl ₂ Sucrose QHCl	Sucrose	QHCI	Citric Acid	Citric Capsaicin Acid	WS-3 FeSO ₄	FeSO ₄
Sermorelin acetate (diagnostic)	PDR (Geref)	Strange taste in mouth									
Succimer (lead poisoning)	PDR (Chemet)	Drug has unpleasant mercaptan odor/taste, metallic taste									
Terbinafine	Griffin, 1992	Taste loss, taste altered									
Ursodiol (gall stone dissolution)	PDR (Actigall)	Bitter-tasting, metallic taste									
Vitamin D/ Calcitriol (hypocalcemia)	 Rollin, 1978 Schiffman, 1983 PDR (Calcijex, Rocaltrol) 	Metallic phantogeusia Metallic taste									
Vitamin K ₁ / Phytonadione (coagulation disorders)	PDR (Aqua- mephyton & Mephyton)	Peculiar sensations of taste									

1 refers to changes of less than 20%, 114 to changes greater than 20% Sources: Schiffman et al., 1983, 1999a,b,c; Zervakis et al., 2000; Schiffman et al., 2000a,b

The first two columns of Table XIII give the generic and trade names of medications that have been associated clinically with taste disorders. The third column lists the clinical taste complaint with the reference given in column 2. The taste thresholds for 62 of the drugs as determined by Schiffman and colleagues are given in column 4. Column 4 also lists the most salient taste of the drug perceived by the subjects at four times higher than their detection thresholds. The detection thresholds given in column 4 are for young subjects; thresholds for elderly subjects were higher on average than those for younger subjects. The symbol "n/a" in the threshold column indicates that the drug either had no taste or was so insoluble in water that the threshold could not be determined. The next columns (5 through 13) indicate changes in intensity of taste qualities for other taste compounds when the tongue was treated with a drug. A single arrow indicates that the change in intensity was less than 20% while a double arrow indicates that the change was greater than 20%.

The results of this series of experiments with 62 drugs showed that taste detection thresholds ranged from as low as $2.9\,\mu\text{M}$ for saquinavir (Invirase) to as high as 24 mM for didanosine. All of the drugs that induced a taste were bitter, sour, or metallic at a concentration 4 times the detection threshold. Furthermore, most of the drugs modified the taste of other compounds to different degrees. This nonhomogenous alteration of other tastes by drugs is likely responsible, in part, for the dysgeusia that is often experienced by elderly who are taking medications.

There are fewer drugs specifically implicated in smell disorders than for taste. This is shown in Table XIV which gives the generic and brand names for medications in columns 1 and 2 that have been associated with smell changes in clinical and experimental studies. Column 3 gives the type of study performed. Column 4 gives the odor impairment or change.

Medications may also induce taste problems secondarily by causing other types of oral side-effects. Dry mouth (xerostomia), an oral side effect of 80.5% of the 131 most frequently prescribed drugs for 1992, can impair oral health and potentiate taste disorders (Smith and Burtner, 1994). This is illustrated by the comparison of terfenadine (Seldane) and terfenadine/pseudoephedrine (Seldane-D). The frequency of xerostomia for terfenadine alone is 2.3–4.8% (Smith and Burtner, 1994) while the frequency of xerostomia for terfenadine/pseudoephedrine is 21.7%. Terfenadine alone is not associated with taste disorders while terfenadine/pseudoephedrine is reported to alter taste perception. The percent of elderly suffering from mouth dryness ranges from 20–40% (Rhodus and Brown, 1990; Gilbert *et al.*, 1993). Approximately half of the institutionalized elderly receive one or more drugs with a hyposalivary side effect such as antidepressants, antihistamines, and analgesics (Handelman *et al.*, 1986).

TABLE XIV
DRUGS THAT INTERFERE WITH THE SMELL SYSTEM

Classification/drug	Source	Type of study	Problem
AIDS-related therapeutic Drugs			
Zalcitabine	PDR (Hivid)	Clinical trial	Smell dysfunction, parosmia
Analgesic			
Sumatriptan succinate	PDR (Imitrex)	Clinical report	Disturbance of smell
Anesthetics, local			
Cocaine HCl and tetracaine HCl	Zilstorff, 1965	Experiment	Reduced smell sensation up to 2 hours
Anticholesteremic			
Probucol	PDR (Lorelco)	I	Diminished sense of smell
Antihypertensive and antiarrhythmic agents	rrhythmic agents		
Amiodarone HCl	PDR (Cordarone)	Retrospective study	Abnormal smell
Diltiazem	Berman, 1985	Clinical	Anosmia; dysosmia
la. Enalapril maleate 1b. Enalaprilat 1c. Enalapril maleate	PDR 1a. (Vaseretic) 1b. (Vasotec IV) 1c. (Vasotec)	1a. Clinical trial1b. Clinical trial1c. Clinical trial	1a-1c. Anosmia

TABLE XIV (continued)
DRUGS THAT INTERFERE WITH THE SMELL SYSTEM

Classification/drug	Source	Type of study	Problem
Nifedipine	Levinson & Kennedy, 1985	Clinical	Dysosmia
Propafenone HCl	PDR (Rythmol)	Clinical trial or report	Unusual smell sensation
Tocainide HCI	PDR (Tonocard)	Clinical trial	Smell perversion
Anti-inflammatory			
Beclomethasone dipropionate	PDR (Beconase)	Clinical trial	Loss of smell
Dexamethasone sodium phosphate	PDR (Decadron Turbinaire) Clinical report	Clinical report	Anosmia
Flunisolide	PDR 1. AeroBid/AeroBid-M 2. Nasalide	 Clinical trial Clinical report 	 Loss of smell Loss of smell
Flurbiprofen	PDR (Ansaid)	Clinical trial	Parosmia
Antimicrobial agents			
Allicin	Body, 1986	Comment	Onion/garlic odor
Ciprofloxacin	PDR (Cipro, Cipro IV, Cipro IV Pharmacy Bulk)	Clinical report	Anosmia

Classification/drug	Source	Type of study	Problem
Ofloxacin	PDR (Floxin)	Clinical report	Disturbance of smell
Pentamidine isethionate	PDR (NebuPent)	Clinical trial	Loss of smell
Streptomycin	Zilstorff & Herbild, 1979	Comment	Parosmia
Ticarcillin disodium and clavulanate potassium	PDR (Timentin)	Clinical report	Disturbance of smell
Tyrothricin	Seydell & McKnight, 1948	Clinical	Anosmia & odor perversions
Antithyroid agents			
Carbimazole	Erikssen et al., 1975	Clinical	Anosmia
Methimazole	Hallman & Hurst, 1953	Clinical	Anosmia
Methylthiouracil	Schneeberg, 1952	Clinical	Hyposmia
Propylthiouracil	Grossman, 1953	Clinical	Anosmia
Bronchodilators and antiasthmatic drugs	thmatic drugs		
Bitolterol mesylate	PDR (Tornalate)	I	Unusual smell
Pirbuterol acetate inhalation aerosol	PDR (Maxair autohaler & inhaler)	Clinical trial	Smell changes

TABLE XIV (continued) drugs that interfere with the smell system

Classification/drug	Source	Type of study	Problem
Opiates			
Codeine	Macht & Macht, 1940	Experiment	Reduced odor sensitivity
Hydromorphone HCl	Macht & Macht, 1940	Experiment	Reduced odor sensitivity
Morphine	Macht & Macht, 1940	Experiment	Reduced odor sensitivity
Psychopharmacologic drugs			
Amitriptyline	 Farbman et al., 1988 Chuah & Hui, 1986 	 Experiment Experiment 	 Affects neurite out-growth & reduces olfactory marker protein Modification of olfactory bulb
Buspirone HCl	PDR (BuSpar)	Clinical report	Altered smell
Clomipramine HCl	PDR (Anafranil)	Clinical report	Parosmia
Radiation therapy			
Radiation to head	Carmichael et al., 1984	Clinical	Anosmia
Sympathomimetic drugs			
Amphetamines	 Goetzl & Stone, 1948 Schiffman, 1983 Turner, 1965 	 Experiment Clinical Experiment 	 Variable Increase in acuity Increase in acuity (fall in threshold)

Classification/drug	Source	Type of study	Problem
Phenmetrazine theoclate with fenbutrazate HCl	Turner, 1965	Experiment	Increase in acuity (fall in threshold)
Other (indication)			
Acetylcholine-like substances (cholinergic)	Skouby & Zilstorff-Pedersen, 1954	Experiment	Decreases smell threshold
Levamisole HCl (immunomodulator – restores depressed immune function)	PDR (Ergamisol)	Clinical trial	Altered sense of smell
Strychnine (central stimulant)	Skouby & Zilstorff-Pedersen, 1954	Experiment	Decreases smell threshold

Hyposalivation may concentrate some drugs into the saliva. Stimulated whole salivary flow rate (SWSFR) is reduced in elderly subjects who use xerostomia-inducing medications. In one study SWSFR was 0.94 ml/min for elderly subjects using xerostomia-inducing medications versus 1.52 ml/min for control subjects (Persson *et al.*, 1991). However, sensations of dry mouth can occur without abnormal salivary gland dysfunction.

The unpleasant tastes of medications can also induce physiological responses indicative of stress. Schiffman and colleagues (2000a) measured concentrations of plasma catecholamines and cortisol before and after oral exposure to 10 ml each of four taste stimuli presented sequentially in a fixed order: water (control), carbonated water, Invirase (a bitter drug), and capsaicin (component in chili pepper). Invirase (0.09 mM) and capsaicin (100 ppm) had strong perceived intensities but were not harmful to the subjects. None of the stimuli were swallowed. Blood samples were taken just prior to the delivery of each of the four taste stimuli and at 5 minutes. 10 minutes, and 25 minutes after each stimulus administration. There was a 25 minute interval between each test stimulus. The main finding was that plasma levels of norepinephrine increased significantly after a single presentation of the bitter-tasting drug Invirase and did not return to baseline after the 25 minute rest period (see Figure 1). The oral irritant (capsaicin) also elevated plasma norepinephrine levels. Neither epinephrine nor cortisol, however, were altered by a single presentation of these stimuli. These findings are consistent with previous research that has found increases in norepinephrine (fight hormone which provides drive to meet the challenge with action) in the early stages of arousal and stress. More intense and sustained exposure to bitter or irritating drugs may affect elevate epinephrine (fight/flight, anxiety) or ultimately cortisol (helplessness, depression) (see Henry, 1993, 1997). Increase in stress hormones may be due to evolutionary association of bitter taste with poisons.

VI. FLAVOR ENHANCEMENT COMPENSATES FOR TASTE AND SMELL LOSSES IN ELDERLY PERSONS

Numerous studies have found that flavor enhancement of table foods and liquids with simulated food flavors can compensate for taste and smell losses and improve immune status. Simulated flavors consist of mixtures of odorants (i.e. odorous molecules) that are extracted or blended from natural products; alternatively they can be synthesized in the laboratory based on chromatographic and mass spectrographic analysis of natural products. Some flavors also contain nonvolatile compounds such as amino acid salts (e.g. monosodium glutamate) that induce taste stimulation.

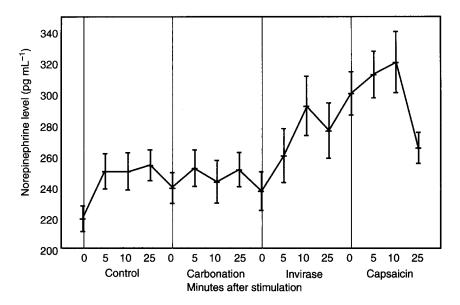


FIG. 1. Norepinephrine values at baseline and 5, 10, and 25 minutes after four stimuli: (a) control (water), (b) carbonation, (c) Invirase, and (d) capsaicin.

Flavor enhancement differs from conventional cooking techniques for increasing flavor with spices, herbs, and salt. Spices and herbs impart different flavors to the food rather than intensify actual food flavors. Five studies are described below that have utilized flavor enhancement of foods for the elderly to improve food palatability and acceptance, improve lymphocyte counts, increase salivary flow, and/or increase secretion rate of salivary immunoglobulin A (sIgA).

A. STUDY 1: FLAVOR ENHANCEMENT INCREASES LYMPHOCYTE COUNTS IN ELDERLY RETIREMENT HOME RESIDENTS

Schiffman and Warwick (1993) found that flavor enhancement of several food items at a meal for elderly retirement home residents resulted in improved immune status as determined by T and B lymphocyte levels and improved grip strength. Thirty-nine elderly independent living residents at a retirement home (mean age 84.6 years) participated in the study. A three-week meal plan was developed, and the subjects were divided into two groups. Group 1 was served foods that were unenhanced by flavor for the first three weeks; they were served the same foods enhanced with flavor for the second three-week period. For group 2, the order was

reversed; they received enhanced foods for the first three-week period and unenhanced foods for the second three-week period. The menu plan during the three weeks of flavor enhancement was identical to the menu plan during the unenhanced three-week period. Flavors were added to some but not all foods at a meal in the flavor enhanced condition.

The six flavors added to foods throughout the study were the following: roast beef, ham, natural bacon, prime beef, maple, and cheese. The flavors contained odorous compounds but no taste compounds such as monosodium glutamate, NaCl, or sweeteners. The flavors were added to vegetables (cauliflower, succotash, cabbage, peas, French cut green beans, mustard greens, Normandy vegetables, parsley cauliflower, peas and carrots, kale, spinach, stewed tomatoes, waxed beans, yellow squash, zucchini squash), gravies and sauces (mushroom gravy, prime beef brown gravy, roast beef brown gravy, roast pork gravy, Spanish sauce, tomato gravy, tomato sauce, vegetable gravy), breakfast foods (eggs, grits, maple syrup, oatmeal), and other main courses (soups, stews, and macaroni and cheese). These 30 foods were selected because they were nutrient dense. For example, simulated beef flavor was added to beef or beef stock to provide a more intense "beef" sensation. The flavor levels were similar to those of concentrated orange juice or extract of vanilla.

Biochemical, anthropometric, and functional measures were taken at the beginning of the study, at the end of three weeks, and at the end of six weeks for every subject. Food consumption was measured for every meal for five days of the week. The main findings were the following. First, addition of flavors increased mean intake for 20 out of 30 foods. However, the increased consumption did not shift the overall caloric intake or dietary nutrient profile. Analysis of the data revealed that subjects consumed the same macro- and micronutrients on the two arms of the study. This occurred because some but not all foods at a meal were enhanced during the three-week flavor-enhancement period; subjects simply ate more enhanced food and less unenhanced food. The second main finding was that immune function was improved (as determined by elevated T and B lymphocyte counts) after consumption of the flavor-enhanced food for three weeks, and this improvement was not attributable to altered intake of macro- and micronutrients. The third finding was that grip strength in both hands was improved after consumption of flavor-enhanced foods for three weeks.

This study was replicated using four-week (rather than three-week) food plans in which monosodium glutamate (to intensify taste) as well as flavors were added on the flavor enhanced arm of the study. Monosodium glutamate (MSG) has a meaty taste quality that is called "umami" in the Japanese language. The concentration of sodium in MSG required to

optimize the taste preferences is much lower than that required for NaCl. The findings of this study that used MSG in conjunction with flavors yielded similar results as the previous one (Schiffman, 1998).

The increases in T and B cell counts obtained from eating flavorenhanced food are important because they provide a mechanism to counteract the progressive immunological decline that occurs with age. Reduced effectiveness of the T cell-dependent immune system in the elderly due in part to thymic involution in immune responsiveness is one reason for the increased susceptibility to infections found in older individuals.

B. STUDY 2: TASTE AND ODOR STIMULATION INCREASES SALIVARY FLOW AND IMPROVES SECRETION RATE OF SALIVARY IGA

Schiffman and Miletic (1999) reported two experiments in which taste and odor stimuli increased the secretion rate of salivary IgA (sIgA). Both young (mean age = 32.4 years) and elderly (mean age = 73.2 years) individuals participated in the experiments. In the first experiment, three different types of drops were delivered to the tongue: (1) "flavor" drops (5% cocoa powder, 60% sugar, and 0.1% Irish cream odor); (2) sugar (60%) (sugar control); and (3) water (water control). The drops were administered three times in 1 gram drops over a one-hour period: at t = 0, at t = 30 minutes, and at t = 60 minutes. In the second experiment, two solid foods (corn, carrots) and two soups (chicken broth, and onion soup) were tested with and without monosodium glutamate. Each food or soup was consumed three times in 6.5 gram samples over a one hour period: at t = 0, at t = 30 minutes, at t = 60 minutes.

In both of the experiments, salivary samples were collected four times: (1) prior to chemosensory stimulation (baseline), (2) immediately following chemosensory stimulation at t = 0 minutes, (3) immediately following chemosensory stimulation at t = 30 minutes, and (4) immediately following chemosensory stimulation at t = 60 minutes. The method for collecting saliva was a standardized method described by Miletic *et al.* (1996). Concentrations of IgA in the saliva were measured using capture ELISA and radial immune diffusion.

In the first experiment, application of sugar (taste alone) and flavor (taste and odor combined) to the tongue induced significantly higher secretion rates of sIgA than the water control for both young and elderly subjects. Furthermore, flavor application (in combination with sugar) produced significantly higher absolute concentrations of sIgA than sugar alone. Secretion rates of sIgA were significantly higher in young persons than those in elderly persons.

In the second experiment, the increase in the secretion rate of sIgA for the elderly subjects at 30 minutes and 60 minutes for each food containing MSG was greater than that for the same food without MSG. It was concluded that chemosensory stimulation increases secretion rates of sIgA by increasing saliva production (both experiments). Furthermore, adding odor to the sugar drop (in the first experiment) increased the absolute concentration of sIgA perhaps through neural-immune connections. The increases in sIgA secretion rates found in these two experiments have important implications for elderly who suffer from dry mouth/reduced salivary flow (and hence reduced oral mucosal immunity) due to medications they are taking.

C. STUDY 3: SENSORY ENHANCEMENT OF FOODS FOR SICK ELDERLY INCREASES INTAKE AND IMPROVES NUTRITIONAL PARAMETERS

Schiffman (1998) found that addition of a combination of flavors and MSG to foods improved intake in 43 hospitalized patients. Each patient had clinical manifestations of malnutrition, a recent weight loss of 6% or more, and/or was below ideal weight. For two days, all foods served to each patient were measured before and after eating; on one of the days the patient received foods with added flavors and MSG; on the other day the foods were unenhanced. The energy density and sodium levels (2400 mg) of the food served on the two days was identical. The concentrations of flavors and MSG added to the food were individualized based on psychophysical measurements of each patient's taste and odor thresholds. The main finding was that 40 of 43 patients consumed at least 10% more calories on the day they were served flavor-enhanced food than on the unenhanced day. Furthermore, sensory enhancement in a subset of patients followed for one week or more led to improved plasma protein levels (including somatomedin-C/insulin-like growth factor I, albumin, or transferrin) and T-lymphocytes for some patients.

D. STUDY 4: FLAVOR ENHANCEMENT OF THE ENTREE AT DINNER CAN REDUCE SODIUM LEVELS IN A MEAL BY 500 mg

Schiffman and Graham (2000) studied satisfaction ratings at six retirement communities for the dinner meal in which flavors were added to an unsalted entree to compensate for salt. Throughout the eight-week study, two entrees (chicken breast and beefsteak) were each served once a week. During the first two weeks (baseline), the entrees (beef or chicken) were salted with the preferred level of table salt for this population (at least 500 mg sodium). For the next six weeks, the entrees were marinated in sodium-free chicken or beef flavor prior to cooking. No table salt was

available for residents to add to the beef or chicken at the table. Two vegetables accompanied the entree, both of which were lightly salted. During the six weeks of flavor enhancement, the sodium content of the two test meals was reduced by 500 mg.

Residents rated their satisfaction with the sensory properties of the dinner meals at which chicken breast or beefsteak were served after completing the meal. The main finding was that there was no difference in the degree of satisfaction between the salted version of the entree (during the two week baseline) and the flavor-enhanced (sodium-free) version (during the six weeks of flavor enhancement). This finding suggests that amplification of odor can substitute for salt in a beef or chicken entree as long as two lightly salted vegetables accompany the meal. That is, addition of flavors to beef and chicken entrees can replace salt with no significant adverse effects on acceptability of flavor. Use of salt-free flavors could be especially helpful to patients with hypertension who wish to comply with a low-sodium diet.

E. STUDY 5: FLAVOR ENHANCEMENT INCREASES PREFERENCE FOR VEGETABLES AND OTHER FOODS

Altered chemosensory perception in cancer patients has been associated with inadequate food intake and/or weight loss (Williams and Cohen, 1978; Bolze et al., 1982; DeWys and Walters, 1975; Ames et al., 1993). Cancer patients who perceive food to be unpalatable or aversive may reduce the diversity of foods consumed and fail to eat enough to meet nutritional requirements (Nielsen et al., 1980; Bernstein and Bernstein, 1981). The results of a recent study of flavor preferences in 13 cancer patients currently undergoing chemotherapy or radiotherapy for breast cancer (Schiffman and Graham, 2000) indicate that cancer patients, like elderly without cancer, preferred flavor-enhanced foods. Breast cancer patients were asked to taste, smell, and swallow two samples of a food (one flavor-enhanced and one without additional flavor) and indicate which one they preferred. In all cases, the flavor-enhanced food was significantly preferred to the unenhanced version. These data suggest that flavor amplification can potentially reduce complaints about sensory properties of foods.

VII. CONCLUSION

Altered taste and smell functioning is common in the elderly population. Taste and smell impairments are due to the process of aging, medication

use, diseases, and environmental exposure. These chemosensory losses not only reduce the pleasure and comfort from food but can contribute to malnutrition and weight loss. In addition, elderly persons with chemosensory losses are more vulnerable to food poisoning or overexposure to environmentally hazardous chemicals, which are otherwise detectable by taste and smell. Enhancing food flavors at a meal can compensate for smell and taste losses. Flavor enhancement has been shown to increase enjoyment of food and improve food intake and immune status.

REFERENCES

- American Association of Retired Persons (AARP). 1995. A profile of older Americans. pp.1–13. Ames, H.G., Gee, M.I., and Hawrysh, Z.J. 1993. Taste perception and breast cancer: evidence of a role for diet. *J. Am. Diet. Assoc.* 93, 541–546.
- Amsterdam, J.D., Settle, R.G., Doty, R.L., Abelman, E., and Winokur, A. 1987. Taste and smell perception in depression. *Biol. Psychiat.* 22, 1481–1485.
- Anand, M.P. 1964. Accidents in the home. In: "Current Achievements in Geriatrics" (W.F. Anderson and B. Isaacs, eds) pp. 239–245. Cassell, London.
- Anavekar, S.N., Saunders, R.H., Wardell, W.M., Shoulson, I., Emmings, F.G., Cook, C.E., and Gringeri, A.J. 1978. Parotid and whole saliva in the prediction of serum total and free phenytoin concentrations. Clin. Pharmacol. Ther. 24, 629–637.
- Andria, G., Ballabio, A., and Parenti, G. 1987. X-linked ichthyosis due to steroid sulfatase deficiency associated with hypogonadism and anosmia [letter]. Ann. Neurol. 22, 98-99.
- Andrykowski, M.A., and Otis, M.L. 1990. Development of learned food aversions in humans: investigation in a "natural laboratory" of cancer chemotherapy. *Appetite* 14, 145–158.
- Anonymous. 1978. Zinc deficiency, taste acuity and growth failure. Nutr. Rev. 36, 213-214.
- Ansari, K.A., and Johnson, A. 1975. Olfactory function in patients with Parkinson's disease. J. Chron. Dis. 28, 493–497.
- Arvidson, K., and Friberg, U. 1980. Human taste: response and taste bud number in fungiform papillae. *Science* **209**, 807–808.
- Atkin, P.A., and Shenfield, G.M. 1995. Medication-related adverse reactions and the elderly: a literature review. Adverse Drug React. Toxicol. Rev. 14, 175-191.
- Atkin, P.A., Veitch, P.C., Veitch, E.M., and Ogle, S.J. 1999. The epidemiology of serious adverse drug reactions among the elderly. *Drugs Aging* 14, 141-152.
- Averback, P. 1983. Two new lesions in Alzheimer's disease. Lancet 2, 1203.
- Bacon, A.W., Bondi, M.W., Salmon, D.P., and Murphy, C. 1998. Very early changes in olfactory functioning due to Alzheimer's disease and the role of apolipoprotein E in olfaction. *Ann. NY Acad. Sci.* **855**, 723–731.
- Bakay, L. 1984. Olfactory meningiomas: The missed diagnosis. J. Am. Med. Assoc. (JAMA) 251, 53-55.
- Baker, B. 1994. Outsmarting Alzheimer's. New research may speed prevention drug. AARP Bulletin 35, 1,14–15.
- Barton, R.P.E. 1974. Olfaction in leprosy. J. Laryngol. Otol. 88, 355-361.
- Bartoshuk, L.M., Desnoyers, S., Hudson, C., Marks, L., O'Brien, M., Catalanotto, F., Gent, J., Williams, D., and Ostrum, K.M. 1987. Tasting on localized areas. Ann. NY Acad. Sci. 510, 166-168
- Beidler, L.M., and Smallman, R.L. 1965. Renewal of cells within taste buds. J. Cell Biol. 27, 263-272.

- Berman, J.L. 1985. Dysosmia, dysgeusia, and diltiazem. Ann. Intern. Med. [letter] 102, 717.
- Bernstein, I.L., and Bernstein, I.D. 1981. Learned food aversions and cancer anorexia. *Cancer Treat. Rep. [Suppl 5]* **65**, 43–47.
- Blacker, D., Haines, J.L., Rodes, L., Terwedow, H., Go, R.C., Harrell, L.E., Perry, R.T., Bassett, S.S., Chase, G., Meyers, D., Albert, M.S., and Tanzi, R. 1997. ApoE-4 and age at onset of Alzheimer's disease: the NIMH genetics initiative. *Neurology* 48, 139–147.
- Blumberg, J. 1997. Nutritional needs of seniors. J. Am. Coll. Nutr. 16, 517-523.
- Body, S.C. 1986. A taste of allicin? Anaesth. Intensive Care 14, 94.
- Bolze, M.S., Fosmire, G.J., Stryker, J.A., Chung, C.K., and Flipse, B.G. 1982. Taste acuity, plasma zinc levels, and weight loss during radiotherapy: a study of relationships. *Radiology* **144**, 163–169.
- Booth, D.A. 1985. Food-conditioned eating preferences and aversions with interoceptive elements: conditioned appetites and satieties. *Ann. NY Acad. Sci.* **443**, 22–41.
- Bourliere, F., Cendron, H., and Rapaport, A. 1959. Action de l'acide acetylsalicylique sur la sensibilite au gout amer chez l'homme. *Rev. Fr. Etudes Clin. Biol.* **4**, 380–382.
- Bradley, R.M. 1988. Effects of aging on the anatomy and neurophysiology of taste. *Gerodontics* 4, 244–248.
- Breer, H. 1994. Odor recognition and second messenger signaling in olfactory receptor neurons. Semin. Cell Biol. 5, 25–32.
- Brenner, B.E., and Simon, R.R. 1984. Glossitis and dysgeusia. Am. J. Emerg. Med. 2, 147.
- Bressler, B. 1980. An unusual side-effect of lithium. Psychosomatics 21, 688-689.
- Brewin, T.B. 1980. Can a tumour cause the same appetite perversion or taste change as a pregnancy? *Lancet* 2, 907–908.
- Brody, D., Serby, M., Etienne, N., and Kalkstein, D.S. 1991. Olfactory identification deficits in HIV infection. *Am. J. Psychiat.* **148**, 248–250.
- Bruera, E., Carraro, S., Roca, E., Cedaro, L., and Chacon, R. 1984. Association between malnutrition and caloric intake, emesis, psychological depression, glucose taste, and tumor mass. *Cancer Treat. Rep.* **68**, 873–876.
- Brun, A., and Gustafson, L. 1976. Distribution of cerebral degeneration in Alzheimer's disease. A clinico-pathological study. *Arch. Psychiat. Nervenkr.* **223**, 15–33.
- Buck, L., and Axel, R. 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175-187.
- Burch, R.E., Sacklin, D.A., Ursick, J.A., Jetton, M.M., and Sullivan, J.F. 1978. Decreased taste and smell acuity in cirrhosis. *Arch. Intern. Med.* 138, 743–746.
- Cain, W.S., and Gent, J. F. 1991. Olfactory sensitivity: reliability, generality, and association with aging. J. Exp. Psychol. Hum. Percept. Perform. 17, 382-391.
- Carmichael, K.A., Jennings, A.S., and Doty, R.L. 1984. Reversible anosmia after pituitary irradiation. Ann. Intern. Med. 100, 532-533.
- Carson, J.A., and Gormican, A. 1977. Taste acuity and food attitudes of selected patients with cancer. J. Am. Diet. Assoc. 70, 361–365.
- Catalanotto, F.A., Bartoshuk, L.M., Ostrum, K.M., Gent, J.F., and Fast, K. 1993. Effects of anesthesia of the facial nerve on taste. Chem. Senses 18, 461–470.
- Catalanotto, F.A., Dore-Duffy, P., Donaldson, J.O., Testa, M., Peterson, M., and Ostrom, K.M. 1984. Quality-specific taste changes in multiple sclerosis. *Ann. Neurol.* 16, 611–615.
- Chalke, H.D., and Dewhurst, J.R. 1957. Accidental coal-gas poisoning: Loss of sense of smell as a possible contributory factor with old people. *Br. Med. J.* 2, 915–917.
- Chalke, H.D., Dewhurst, J.R., and Ward, C.W. 1958. Loss of sense of smell in old people. *Public Health* 72, 223–230.
- Chapman, K.M., and Nelson, R.A. 1994. Loss of appetite: managing unwanted weight loss in the older patient. *Geriatrics* **49**, 54–59.

- Chencharick, J.D., and Mossman, K.L. 1983. Nutritional consequences of the radiotherapy of head and neck cancer. *Cancer* 51, 811-815.
- Cherington, M. 1976. Guanidine and germine in Eaton-Lambert syndrome. *Neurology* 26, 944–946.
- Chuah, M.I., and Hui, B.S. 1986. Effect of amitriptyline on laminar differentiation of neonatal rat olfactory bulb. *Neurosci. Lett.* **70**, 28–33.
- Church, J.A., Bauer, H., Bellanti, J.A., Satterly, R.A., and Henkin, R.I. 1978. Hyposmia associated with atopy. *Ann. Allergy* 40, 105-109.
- Ciechanover, M., Peresecenschi, G., Aviram, A., and Steiner, J.E. 1980. Malrecognition of taste in uremia. *Nephron* **26**, 20–22.
- Cohen, H.J. 1998. Cancer and aging: Overview. In "American Society of Clinical Oncology Education Book" (M.C. Perry, ed.) pp. 223-226. American Society of Clinical Oncology, Alexandria.
- Cohen, I.K., Schechter, P.J., and Henkin, R.I. (1973). Hypogeusia, anorexia, and altered zinc metabolism following thermal burn. JAMA 223, 914–916.
- Cohen, L. 1964. Disturbance of taste as a symptom of multiple sclerosis. Br. J. Oral Surg. 2, 184–185.
- Conger, A.D. 1973. Loss and recovery of taste acuity in patients irradiated to the oral cavity. *Radia. Res.* 53, 338–347.
- Contreras, R.J., and Frank, M. 1979. Sodium deprivation alters neural responses to gustatory stimuli. J. Gen. Physiol. 73, 569-594.
- Cowart, B.J., Garrison, L.B., Young, I.M., and Lowry, L.D. 1989 A discrepancy between odor thresholds and identification in dysosmia. *Chem. Senses* 14, 642.
- Crosley, C.J., and Dhamoon, S. 1983. Migrainous olfactory aura in a family [letter]. *Arch. Neurol.* **40**, 459.
- Cruz, A., and Green, B.G. 2000. Thermal stimulation of taste. Nature 403, 889-892.
- Currie, S. Heathfield, K.W.G., Henson, R.A., and Scott, D.F. 1971. Clinical course and prognosis of temporal lobe epilepsy. A survey of 666 patients. *Brain* 94, 173–190.
- Dahl, H., Norskov, K., Peitersen, E., and Hilden, J. 1984. Zinc therapy of acetazolamide-induced side-effects. Acta. Ophthalmol. 62, 739-745.
- Das, S.K., and Munro, I.R. 1979. Anosmia in Crouzon's syndrome and its recovery following cranio-facial reconstruction. *Br. J. Plast. Sur.* 32, 55–56.
- Davies, A.M. 1989. Older populations, aging individuals and health for all. *World Health Forum* **10**, 299–306; discussion 306–321.
- Dawling, S., and Crome, P. 1989. Clinical pharmacokinetic considerations in the elderly. An update. Clin. Pharmacokinet. 17, 236–263.
- de Jong, N., Mulder, I., de Graaf, C., and van Staveren, W.A. 1999. Impaired sensory functioning in elders: the relation with its potential determinants and nutritional intake. *J. Gerontol. A. Biol. Sci. Med. Sci.* 54, B324–B331.
- Delaney, P., Henkin, R.I., Manz, H., Satterly, R.A., and Bauer, H. 1977. Olfactory sarcoidosis. *Arch. Otolaryngol.* **103**, 717–724.
- DeSimone, J.A., Heck, G.L., and Bartoshuk, L.M. 1980. Surface active taste modifiers: A comparison of the physical and psychophysical properties of gymnemic acid and sodium lauryl sulfate. *Chem. Senses* 5, 317–330.
- Desor, J.A., and Maller, O. 1975. Taste correlates of disease states: Cystic fibrosis. J. Pediat. 87, 93–96.
- DeWys, W.D., and Walters, K. 1975. Abnormalities of taste sensation in cancer patients. Cancer 36, 1888–1896.
- Dodson, H.C. and Bannister, L.H. 1980. Structural aspects of ageing in the olfactory and vomeronasal epithelia in mice. In: "Olfaction and Taste" (H. van der Starre, ed.) Vol II. IRL Press, London.

- Doty, R.L. 1991. Olfactory capacities in aging and Alzheimer's disease: psychophysical and anatomic considerations. *Ann. NY Acad. Sci.* **640**, 20–27.
- Doty, R.L., and Snow, J.B. Jr. 1987. Olfaction. In: "The Principles and Practice of Rhinology" (J. Goldman, ed.) pp 761–785. John Wiley, New York.
- Doty, R.L., Deems, D.A., and Stellar, S. 1988. Olfactory dysfunction in Parkinsonism: A general deficit unrelated to neurologic signs, disease stage, or disease duration. *Neurology* 38, 1237–1244.
- Doty, R.L., Reyes, P.F., and Gregor, T. 1987. Presence of both odor identification and detection deficits in Alzheimer's disease. *Brain Res. Bull.* 18, 597–600.
- Doty, R.L., Riklan, M., Deems, D.A., Reynolds, C., and Stellar, S. 1989. The olfactory and cognitive deficits of Parkinson's disease: evidence for independence. *Ann. Neurol.* 25, 166–171.
- Doty, R.L., Shaman, P., Applebaum, S.L, Giberson, R., Siksorski, L., and Rosenberg, L. 1984. Smell identification ability: changes with age. *Science* **226**, 1441–1443.
- Douek, E., Bannister, L.H., and Dodson, H.C. 1975. Recent advances in the pathology of olfaction. *Proc. R. Soc. Med.* **68**, 467–470.
- Duffield, J.E. 1973. Side effects of lithium carbonate. Br. Med. J. 1, 491.
- Duffy, V.B., Backstrand, J.R., and Ferris, A.M. 1995. Olfactory dysfunction and related nutritional risk in free-living, elderly women. J. Am. Diet Assoc. 95, 879–884.
- Duhra, P., and Foulds, I. S. 1988. Methotrexate-induced impairment of taste acuity. Clin. Exper. Dermatol. 13, 126–127.
- Ekstrand, T. 1979. Bell's palsy: Prognostic accuracy of case history, sialometry and taste impairment. Clin. Otolaryngol. 4, 183-196.
- El-Deiry, A., and McCabe, B.F. 1990. Temporal lobe tumor manifested by localized dysgeusia. Ann. Otol. Rhinol. Laryngol. 99, 586–587.
- Erikssen, J., Seegaard, E., and Naess, K. 1975. Side-effect of thiocarbamides. *Lancet* 1, 231–232. Ewing, R.C., Janda, S.M., and Henann, N.E. 1989. Ageusia associated with transdermal nitroglycerin. *Clin. Pharm.* 8, 146–147.
- Fallis, N., Lasagna, L., and Tetreault, L. 1962. Gustatory thresholds in patients with hypertension. *Nature* 196, 74-75.
- Farbman, A.I., Gonzales, F., and Chuah, M.I. 1988. The effect of amitriptyline on growth of olfactory and cerebral neurons in vitro. *Brain Res.* 457, 281–286.
- Fehm-Wolfsdorf, G., Scheible, E., Zenz, H., Born, J., and Fehm, H.L. 1989. Taste thresholds in man are differentially influenced by hydrocortisone and dexamethasone. *Psychoneuroendocrinology* **14**, 433–440.
- Fein, B.T., Kamin, P.B., and Fein, N.N. 1966. The loss of sense of smell in nasal allergy. *Ann. Allergy* 24, 278–283.
- Ferguson, A.W., de la Harpe, P.L., and Farquhar, J.W. 1961. Dimethyldiguanide in the treatment of diabetic children. *Lancet* 1, 1367–1369.
- Fetting, J.H., Wilcox, P.M., Sheidler, V.R., Enterline, J.P., Donehower, R.C., and Grochow, L.B. (1985). Tastes associated with parenteral chemotherapy for breast cancer. *Cancer Treat. Rep.* **69**, 1249–1251.
- Fischer, R., Griffin, F., Archer, R.C., Zinmeister, S.C., and Jastram, P.S. 1965. Weber ratio in gustatory chemoreception: An indicator of systemic (drug) reactivity. *Nature* 207, 1049–1053.
- Fisher, C.M. 1971. Raeder's benign paratrigeminal syndrome with dysgeusia. *Trans. Am. Neurol. Assoc.* **96**, 234–236.
- Fogan, L. 1971. Griseofulvin and dysgeusia: implications? Ann. Intern. Med. 74, 795.
- Francis, P.T., Palmer, A.M., Snape, M., and Wilcock, G.K. 1999. The cholinergic hypothesis of Alzheimer's disease: a review of progress. *J. Neurol. Neurosurg. Psychiatry* 66, 137–147.

- Frankel, D.H., Mostofi, R.S., and Lorincz, A.L. 1985. Oral Crohn's disease: Report of two cases in brothers with metallic dysgeusia and review of the literature. *J. Am. Acad. Dermatol.* 12, 260–268
- Furstenberg, A.C., Crosby, E., and Farrior, B. 1943. Neurologic lesions which influence the sense of smell. *Arch. Otolaryngol.* 38, 529-530.
- Gallagher, P., and Tweedle, D. E. 1983. Taste threshold and acceptability of commercial diets in cancer patients. *J. Parenter. Enteral. Nutr.* 7, 361–363.
- Garrett-Laster, M., Russell, R.M., and Jacques, P.F. 1984. Impairment of taste and olfaction in patients with cirrhosis: The role of vitamin A. *Human Nutr. Clin. Nutr.* 38C, 203–214.
- Ghorbanian, S.N., Paradise, J.L., and Doty, R.L. 1978. Odor perception in children in relation to nasal obstruction. *Pediat. Res.* 12, 371.
- Giduck, S.A., Threatte, R.M., and Kare, M.R. 1987. Cephalic reflexes: their role in digestion and possible roles in absorption and metabolism. *J. Nutr.* 117, 1191–1196.
- Giebel, W., Schonleber, K.H., Breuninger, H., and Ullmann, U. 1979. Quantitative determination of protein, albumin, and antibiotics in nasal secretions of healthy probands. (German) *Arch. Otorhinolaryngol.* **225**, 149–159.
- Gifford, R.W. 1970. Ethacrynic acid alone and in combination with methyldopa in management of mild hypertension: A report of 23 patients. *Int. Z. Klin. Pharmakol. Ther. Toxik.* 3, 255–260.
- Gilbert, G.H., Heft, M.W., and Duncan, R.P. 1993. Mouth dryness as reported by older Floridians. *Community Dent. Oral Epidemiol.* 21, 390–397.
- Gilbertson, T.A., Fontenot, D.T., Liu, L., Zhang, H., and Monroe, W.T. 1997. Fatty acid modulation of K⁺ channels in taste receptor cells: gustatory cues for dietary fat. *Am. J. Physiol.* 272, C1203–1210.
- Gilmore, M.M. and Murphy, C. 1989. Aging is associated with increased Weber ratios for caffeine, but not for sucrose. *Percept. Psychophys.* 46, 555-559.
- Giza, B.K., Deems, R.O., Vanderweele, D.A., and Scott, T.R. 1993. Pancreatic glucagon suppresses gustatory responsiveness to glucose. *Am. J. Physiol.* **265**, R1231–1237.
- Goetzl, F.R., and Stone, F. 1948. The influence of amphetamine sulfate upon olfactory acuity and appetite. *Gastroenterology* **10**, 708–713.
- Goy, J.J., Finci, L., and Sigwart, U. 1985. Dysgeusia after high dose dipyridamole treatment. Arzneimittelforschung 35, 854.
- Green, B.G. 1996. Chemesthesis: Pungency as a component of flavor. *Trends Food Sci. Technol.* 7, 415–420.
- Green, R.F. 1971. Subclinical pellagra and idiopathic hypogeusia. JAMA 218, 1303.
- Griep, M.I., Verleye, G., Franck, A.H., Collys, K., Mets, T.F., Massart, D.L. 1996. Variation in nutrient intake with dental status, age and odour perception. *Eur. J. Clin. Nutr.* **50**, 816–825.
- Griffin, J.P. 1992. Drug-induced disorders of taste. Adverse Drug React. Toxicol. Rev. 11, 229–239. Grossman, S. 1953. Loss of taste and smell due to propylthiouracil therapy. NY State J. Med.
- Grossman, S. 1953. Loss of taste and smell due to propylthiouracil therapy. NY State J. Med. 53, 1236.
- Guthrie, D., and Way, S. 1974. Treatment of advanced carcinoma of the cervix with adriamycin and methotrexate combined. *Obstet. Gynecol.* **44**, 586–589.
- Halbreich, U. 1974. Tegretol dependency and diversion of the sense of taste. *Isr. Ann. Psychiatry* 12, 328–332.
- Hall, J.C., Staniland, J.R., and Giles, G.R. 1980. Altered taste thresholds in gastro-intestinal cancer. Clin. Oncol. 6, 137–142.
- Hallman, B.L., and Hurst, J.W. 1953. Loss of taste as toxic effect of methimazole (Tapazole) therapy: Report of three cases. *JAMA* 152, 322.
- Halter, J., Kulkosky, P., Woods, S., Makous, W., Chen, M., and Porte, D. 1975. Afferent receptors, taste perception, and pancreatic endocrine function in man. *Diabetes* 24, 414.

- Handelman, S.L., Baric, J.M., Espeland, M.A., and Berglund, K.L. 1986. Prevalence of drugs causing hyposalivation in an institutionalized geriatric population. *Oral Surg. Oral Med. Oral. Pathol.* 62, 26–31.
- Hellekant, G., and Gopal, V. 1975. Depression of taste responses by local or intravascular administration of salicylates in the rat. *Acta Physiol. Scand.* **95**, 286–292.
- Henkin, R.I. 1967. Abnormalities of taste and olfaction in patients with chromatin negative gonadal dysgenesis. *J. Clin. Endocrinol. Metab.* 27, 1436–1440.
- Henkin, R.I. 1968. Impairment of olfaction and of the tastes of sour and bitter in pseudo-hypoparathyroidism. *J. Clin. Endocrinol. Metab.* 28, 624–628.
- Henkin, R.I. 1971. Griseofulvin and dysgeusia: Implications? Ann. Intern. Med. 74, 795-796.
- Henkin, R.I. 1975. The role of adrenal corticosteroids in sensory processes. In: "Handbook of Physiology Endocrinology" (H. Blaschko, A. D. Smith, and G. Sayers, eds) pp. 209–230. Williams and Wilkins, Baltimore.
- Henkin, R.I., and Kopin, I.J. 1964. Abnormalities of taste and smell thresholds in familial dysautonomia: Improvement with methacholine. *Life Sci.* 3, 1319–1325.
- Henkin, R.I., and Larson, A.L. 1972. On the mechanism of hyposmia following laryngectomy in man. *Laryngoscope* **82**, 836–843.
- Henkin, R.I., and Powell, G.F. 1962. Increased sensitivity of taste and smell in cystic fibrosis. *Science* **138**, 1107–1108.
- Henkin, R.I., and Smith, F.R. 1971. Hyposmia in acute viral hepatitis. Lancet 1, 823-826.
- Henkin, R.I., Christiansen, R.L., and Bosma, J.F. 1966. Impairment of recognition of oral sensation and familial hyposmia in patients with facial hypoplasia and growth retardation: A new syndrome. *Clin. Res.* 14, 236.
- Henkin, R.I., Hoye, R.C., Ketcham, A.S., and Gould, W.J. 1968. Hyposmia following laryngectomy. *Lancet* 2, 479–481.
- Henkin, R.I., Larson, A.L., and Powell, R.D. 1975. Hypogeusia, dysgeusia, hyposmia, and dysosmia following influenza-like infection. *Ann. Otol. Rhinol. Laryngol.* 84, 672–682.
- Henkin, R.I., Talal, N., Larson, A.L., and Mattern, C.F.T. 1972. Abnormalities of taste and smell in Sjogren's syndrome. *Ann. Intern. Med.* 76, 375–383.
- Henry, J.P. 1993. Psychological and physiological responses to stress: the right hemisphere and the hypothalamo-pituitary-adrenal axis, an inquiry into problems of human bonding. *Integr. Physiol. Behav. Sci.* 28, 369–387.
- Henry, J.P. 1997. Psychological and physiological responses to stress: the right hemisphere and the hypothalamo-pituitary-adrenal axis, an inquiry into problems of human bonding. *Acta Physiol. Scand. Suppl.* **640**, 10–25.
- Hertz, J., Cain, W.S., Bartoshuk, L.M., and Dolan, T.F. 1975. Olfactory and taste sensitivity in children with cystic fibrosis. *Physiol. Behav.* 14, 89–94.
- Hinds, J.W. and McNelly, N.A. 1981. Aging in the rat olfactory system: Correlation of changes in the olfactory epithelium and olfactory bulb. *J. Comp. Neurol.* **203**, 441–453.
- Hodgson, T.G. 1981. Bad taste from cefamandole. Drug Intell. Clin. Pharm. 15, 136.
- Höfer, D., Puschel, B., and Drenckhahn, D. 1996. Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. *Proc. Natl. Acad. Sci. USA* **93**, 6631–6634.
- Hotchkiss, W.T. 1956. Influence of prednisone on nasal polyposis with anosmia. *Arch. Otolaryngol.* **64**, 478–479.
- Hoye, R.C., Ketcham, A.S., and Henkin, R.I. 1970. Hyposmia after paranasal sinus exenteration or laryngectomy. Am. J. Surg. 120, 485–491.
- Hummel, T., Barz, S., Lotsch, J., Roscher, S., Kettenmann, B., and Kobal, G. 1996. Loss of olfactory function leads to a decrease of trigeminal sensitivity. Chem. Senses 21, 75-79.
- Huskisson, E.C., Jaffe, I.A., Scott, J., and Dieppe, P.A. 1980. 5-Thiopyridoxine in rheumatoid arthritis: Clinical and experimental studies. *Arthritis Rheum.* 23, 106-110.

- Hyman, B.T., Van Hoesen, G.W., Damasio, A.R., and Barnes, C.L. 1984. Alzheimer's disease: Cell-specific pathology isolates the hippocampal formation. *Science* 225, 1168–1170.
- Jacobs, K.M., Mark, G.P., and Scott, T.R. 1988. Taste responses in the nucleus tractus solitarius of sodium-deprived rats. *J. Physiol. (Lond)* **406**, 393–410.
- Jaehde, U., Sorgel, F., Naber, K.G., Zurcher, J., and Schunack, W. 1995. Distribution kinetics of enoxacin and its metabolite oxoenoxacin in excretory fluids of healthy volunteers. Antimicrob. Agents Chemother. 39, 2092–2097.
- Jafek, B.W., Eller, P.M., Esses, B.A., and Moran, D.T. 1989. Post-traumatic anosmia. Ultrastructural correlates. Arch. Neurol. 46, 300-304.
- Jaffe, I. A. 1970. Ampicillin rashes. Lancet 1, 245.
- Jarus, G.D., and Feldon, S.E. 1982. Clinical and computed tomographic findings in the Foster Kennedy syndrome. *Am. J. Ophthalmol.* **93**, 317–322.
- Jeppsson, P.H., and Hallen, O. 1971. The taste after operation for otosclerosis. *Pract. Oto-rhinolaryng.* **33**, 215–221.
- Johansson, B., Stenman, E., and Bergman, M. 1984. Clinical study of patients referred for investigation regarding so-called oral galvanism. Scand. J. Dental Res. 92, 469–475.
- Jones, B.P., Moskowitz, H.R., and Butters, N. 1975. Olfactory discrimination in alcoholic Korsakoff's patients. *Neuropsychologia* 13, 173-179.
- Jorgensen, M. B., and Buch, N. H. 1961. Studies on the sense of smell and taste in diabetics. *Acta Otolaryngol.* **53**, 539–545.
- Kallmann, F.J., Schoenfeld, W.A., and Barrera, S.E. 1944. The genetic aspects of primary eunuchoidism. *Am. J. Ment. Defic.* 48, 203–236.
- Kalmus, H., and Farnsworth, D. 1959. Impairment and recovery of taste following irradiation of the oropharynx. *J. Laryngol. Otol.* **73**, 180–182.
- Kashima, H.K., and Kalinowski, B. 1979. Taste impairment following laryngectomy. *Ear Nose Throat J.* 58, 62–71.
- Kassirer, M.R., and Such, R. 1989. Persistent high-altitude headache and aguesia without anosmia. *Arch. Neurol.* 46, 340–341.
- Keiser, H.R., Henkin, R.I., Bartter, F.C., and Sjoerdsma, A. 1968. Loss of taste during therapy with penicillamine. *JAMA* 203, 381–383.
- Kesslak, J.P., Cotman, C.W., Chui, H.C., van den Noort, S., Fang, H., Pfeffer, R., and Lynch, G. 1988. Olfactory tests as possible probes for detecting and monitoring Alzheimer's disease. *Neurobiol. Aging* 9, 399–403.
- Kettenmann, B., Hummel, C., Stefan, H., and Kobal, G. 1996. Multichannel magnetoencephalographical recordings: separation of cortical responses to different chemical stimulation in man. *Electroencephalogr. Clin. Neurophysiol. Suppl.* **46**, 271–274.
- Kim, M., and Mistretta, C.M. 1993. 4-Aminopyridine reduces chorda tympani nerve taste responses to potassium and alkali salts in rat. *Brain Res.* 612, 96–103.
- Kimbrell, G.M., and Furchtgott, E. 1963. The effect of aging on olfactory threshold. *J. Gerontol.* **18**, 364–365.
- Kinnamon, S.C., and Margolskee, R.F. 1996. Mechanisms of taste transduction. Curr. Opin. Neurobiol. 6, 506-513.
- Knupfer, L., and Spiegel, R. 1986. Differences in olfactory test performance between normal aged, Alzheimer and vascular type dementia individuals. *Int. J. Geriatr. Psychiat.* 1, 3-14.
- Koss, E., Weiffenbach, J.M., Haxby, J.V., and Friedland, R.P. 1987. Olfactory detection and recognition in Alzheimer's disease. *Lancet* 1, 622.
- Koss, E., Weiffenbach, J.M., Haxby, J.V., and Friedland, R.P. 1988. Olfactory detection and identification performance are dissociated in early Alzheimer's disease. *Neurology* 38, 1228–1232.

- Kragh-Sorensen, P., and Larsen, N-E. 1980. Factors influencing nortriptyline steady-state kinetics: Plasma and saliva levels. *Clin. Pharmacol. Ther.* **28**, 796–803.
- Lahon, H.F.J., and Mann, R.D. 1973. Glipizide: Results of a multicentre clinical trial. *J. Int. Med. Res.* 1, 608–615.
- Landfield, P.W., and Pitler, T.A. 1984. Prolonged Ca²⁺-dependent after hyperpolarizations in hippocampal neurons in aged rats. *Science* **226**, 1089–1092.
- Landfield, P.W., Waymire, J.C., and Lynch, G. 1978. Hippocampal aging and adrenocorticoids: Quantitative correlations. *Science* **202**, 1098–1102.
- Lang, N.P., Catalanotto, F.A., Knopfli, R.U., and Antczak, A.A. 1988. Quality-specific taste impairment following the application of chlorhexidine digluconate mouthrinses. J. Clin. Periodontol. 15, 43–48.
- Larsson, M., Semb, H., Winblad, B., Amberla, K., Wahlund, L.O., and Backman, L. 1999. Odor identification in normal aging and early Alzheimer's disease: effects of retrieval support. *Neuropsychology* 13, 47-53.
- Lehman, C.D., Bartoshuk, L.M., Catalanotto, F.C., Kveton, J.F., and Lowlicht, R.A. 1995. Effect of anesthesia of the chorda tympani nerve on taste perception in humans. *Physiol. Behav.* 57, 943–951.
- Lehrer, S., Levine, E., and Bloomer, W.D. 1985. Abnormally diminished sense of smell in women with oestrogen receptor positive breast cancer. *Lancet* 2, 333.
- Leigh, A.D. 1943. Defects of smell after head injury. Lancet 1, 38-40.
- Leopold, D.A., Bartoshuk, L., Doty, R.L., Jafek, B., Smith, D.V., and Snow, J.B. 1989. Aging of the upper airway and the senses of taste and smell. *Otolaryngol. Head Neck Surg.* 100, 287–289.
- Leopold, D.A., Preti, G., Mozell, M.M., Youngentob, S.L., and Wright, H.N. 1990. Fish-odor syndrome presenting as dysosmia. Arch. Otolaryngol. Head Neck Surg. 116, 354–355.
- Levin, H.S., High, W.M., and Eisenberg, H.M. 1985. Impairment of olfactory recognition after closed head injury. *Brain* 108, 579–591.
- Levinson, J.L., and Kennedy, K. 1985. Dysosmia, dysgeusia, and nifedipine [letter]. *Ann. Intern. Med.* 102, 135–136.
- Levy, G., Procknal, J.A., Olufs, R., and Pachman, L.M. 1980. Relationship between saliva salicylate concentration and free or total salicylate concentration in serum of children with juvenile rheumatoid arthritis. *Clin. Pharmacol. Ther.* 27, 619–627.
- Lewis, I.K., Hanlon, J.T., Hobbins, M.J., and Beck, J.D. 1993. Use of medications with potential oral adverse drug reactions in community-dwelling elderly. *Spec. Care Dentist.* 13, 171–176.
- Lindemann, B. 1996. Chemoreception: tasting the sweet and the bitter. Curr. Biol. 6, 1234-1237.
- Lindley, C., Lowder, D., Sauls, A., McCune, J., Sawyer, W., and Eatmon, T. 1996. Patient perception of the impact and magnitude of the side-effects of chemotherapy: the Coates study revisited (Meeting abstract). Proc. Annu. Meet. Am. Soc. Clin. Oncol. 15, A1652.
- Liss, L. and Gomez, F. 1958. The nature of senile changes of the human olfactory bulb and tract. *Arch. Otolaryngol.* **67**, 167–171.
- Lucas, C., and Schiffman, S. 1999. The essence of enhancement. Increasing residents' health and quality of life while increasing revenue. *Nat. Invest. Center Rev.* 7, 35–41.
- Machado-Salas, J., Scheibel, M.E., and Scheibel, A.B. 1977. Morphologic changes in the hypothalamus of the old mouse. *Exp. Neurol.* 57, 102–111.
- Macht, D.I., and Macht, M.B. 1940. Comparison of effect of cobra venom and opiates on olfactory sense. *Amer. J. Physiol.* 129, P411-412.
- Magnasco, L.D., and Magnasco, A.J. 1985. Metallic taste associated with tetracycline therapy. *Clin. Pharm.* **4**, 455–456.
- Mair, R.G., Doty, R.L., Kelly, K.M., Wilson, C.S., Langlais, P.J., McEntee, W.J., and Vollmecke,

- T.A. 1986. Multimodal sensory discrimination deficits in Korsakoff's psychosis. *Neuropsychologia* 24, 831–839.
- Males, J.L., Townsend, J.L., and Schneider, R.A. 1973. Hypogonadotropic hypogonadism with anosmia-Kallman's syndrome. A disorder of olfactory and hypothalamic function. Arch. Intern. Med. 131, 501-507.
- Marshall, J. R., and Henkin, R. I. 1971. Olfactory acuity, menstrual abnormalities, and oocyte status. *Ann. Int. Med.* **75**, 207–211.
- Mata, F. 1963. Effect of dextro-amphetamine on bitter taste threshold. J. Neuropsychiatry 4, 315–320.
- Matsuda, T. and Doty, R. L. 1995. Regional taste sensitivity to NaCl: relationship to subject age, tongue locus and area of stimulation. *Chem. Senses* 20, 283–290.
- Matsuyama, H., and Tomita, H. 1986. Clinical applications and mechanism of intravenous taste tests. *Auris Nasus Larynx* [13 Suppl] 1, S43–50.
- Mattes, R.D., Christensen, C.M., and Engelman, K. 1990. Effects of hydrochlorothiazide and amiloride on salt taste and excretion (intake). *Am. J. Hypertension* 3, 436–443.
- Mattes, R.D., Arnold, C., and Boraas, M. 1987. Management of learned food aversions in cancer patients receiving chemotherapy. *Cancer Treat. Rep.* **71**, 1071–1078.
- McConnell, R.J., Menendez, C.E., Smith, F.R., Henkin, R.I., and Rivlin, R.S. 1975. Defects of taste and smell in patients with hypothyroidism. *Am. J. Med.* **59**, 354–364.
- McCurdy, P.R. 1964. Parenteral iron therapy. II. A new iron-sorbitol citric acid complex for intra-muscular injection. *Ann. Intern. Med.* 61, 1053-1064.
- McFate-Smith, W., Davies, R.O., Gabriel, M.A., Kramsch, D.M., Moncloa, F., Rush, J.E., and Walker, J.F. 1984. Tolerance and safety of enalapril. *Br. J. Clin. Pharmacol. (Suppl. 2)* 18, 249S–255S.
- McNeil, J.J., Anderson, A., Christophidis, N., Jarrott, B., and Louis, W.J. 1979. Taste loss associated with oral captopril treatment. *Br. Med. J.* 2, 1555–1556.
- Meats, P. 1988. Olfactory hallucinations [letter]. Br. Med. J. 296, 645.
- Megighian, D. 1958. Variazioni della soglia olfattiva nell'ets senile. *Minerva Otorinolaringol.* **9.** 331–337.
- Melon, J., and Reginster, M. 1976. Passage into normal salivary, lacrimal and nasal secretions of ampicillin and erythromycin administered intramuscularly. (French) Acta Otorhinolaryngol. Belg. 30, 643–651.
- Miletic, I.D., Schiffman, SS., Miletic, V.D., and Sattely-Miller, E.A. 1996. Salivary IgA secretion rate in young and elderly persons. *Physiology and Behavior* **60**(1), 243–248.
- Mistretta, C.M. 1984. Aging effects on anatomy and neurophysiology of taste and smell. Gerodontology 3, 131-136.
- Moberg, P.J., Pearlson, G.D., Speedie, L.J., Lipsey, J.R., Strauss, M.E., and Folstein, S.E. 1987. Olfactory recognition: Differential impairments in early and late Huntington's and Alzheimer's diseases. *J. Clin. Exp. Neuropsychol.* 9, 650-664.
- Mombaerts, P. 1999. Seven-transmembrane proteins as odorant and chemosensory receptors. *Science* **286**, 707–711.
- Moran, D.T., Jafek, B.W., Rowley, J.C., and Eller, P.M. 1985. Electron microscopy of olfactory epithelia in two patients with anosmia. *Arch. Otolaryngol.* 111, 122–126.
- Mori, K., and Yoshihara, Y. 1995. Molecular recognition and olfactory processing in the mammalian olfactory system. *Prog. Neurobiol.* 45, 585-619.
- Morley, J.E. 1997. Anorexia of aging: physiologic and pathologic. *Am. J. Clin. Nutr.* 66, 760-773. Morley, J.E., and Thomas, D.R. 1999. Anorexia and aging: Pathophysiology. *Nutrition* 15,
- 499–503.

 Morrison, E.E., and Costanzo, R.M. 1992. Morphology of olfactory epithelium in humans and other vertebrates. *Microsc. Res. Tech.* 23, 49–61.

- Mossman, K., Shatzman, A., and Chencharick, J. 1982. Long-term effects of radiotherapy on taste and salivary function in man. *Int. J. Radiat. Oncol. Biol. Phys.* 8, 991–997.
- Mossman, K.L., and Henkin, R.I. 1978. Radiation-induced changes in taste acuity in cancer patients. *Int. J. Radiat. Oncol. Biol. Phys.* 4, 663–670.
- Moulton, D.G. 1974. Dynamics of cell populations in the olfactory epithelium. *NY Acad. Sci.* 237, 52-61.
- Mucklow, J.C., Bending, M.R., Kahn, G.C., and Dollery, C.T. 1978. Drug concentration in saliva. *Clin. Pharmacol. Ther.* **24**, 563–570.
- Mulder, N.H., Smit, J.M., Kreumer, W.M., Bouman, J., Sleijfer, D.T., Veeger, W., and Schraffordt Koops, H. 1983. Effect of chemotherapy on taste sensation in patients with disseminated malignant melanoma. *Oncology* **40**, 36–38.
- Murphy, C. 1983. Age-related effects on the threshold, psychophysical function, and pleasantness of menthol. *J. Gerontol.* 38, 217–222.
- Murphy, C. 1985. Cognitive and chemosensory influences on age-related changes in the ability to identify blended foods. *J. Gerontol.* **40**, 47–52.
- Murphy, C. 1993. Nutrition and chemosensory perception in the elderly. Crit. Rev. Food Sci. Nutr. 33, 3-15.
- Murphy, C., Bacon, A.W., Bondi, M.W., and Salmon, D.P. 1998. Apolipoprotein E status is associated with odor identification deficits in nondemented older persons. *Ann. NY Acad. Sci.* **855**, 744–750.
- Murphy, C., Gilmore, M.M., Seery, C.S., Salmon, D.P., and Lasker, B.R. (1990). Olfactory thresholds are associated with degree of dementia in Alzheimer's disease. *Neurobiol. Aging* 11, 465–469.
- Murphy, C., Lasker, B.R., and Salmon, D.P. 1987. Olfactory dysfunction and odor memory. In "Alzheimer's disease, Huntington's disease and normal aging." Society for Neuroscience Abstracts, Vol. 13, Part 1, 17th Annual Meeting, New Orleans, LA, p. 1403.
- Naessen, R. 1971. An inquiry on the morphological characteristics and possible changes with age in the olfactory region of man. *Acta Otolaryngol.* 71, 49–62.
- Nakajima, Y., Utsumi, H., and Takahashi, H. 1983. Ipsilateral disturbance of taste due to pontine haemorrhage. *J. Neurol.* **229**, 133–136.
- Nielsen, S.S., Theologides, A., and Vickers, Z.M. 1980. Influence of food odors on food aversions and preferences in patients with cancer. *Am. J. Clin. Nutr.* 33, 2253–2261.
- Nor, N.B., Fox, M.A., Metcalfe, I.R., and Russell, W.J. 1996. The taste of intravenous thiopentone. *Anaesth. Intensive Care* 24, 483–485.
- Nordin, S., Monsch, A. U., and Murphy, C. 1995. Unawareness of smell loss in normal aging and Alzheimer's disease: discrepancy between self-reported and diagnosed smell sensitivity. J. Gerontol. B Psychol. Sci. Soc. Sci. 50, P187-92.
- Norgren, R. 1990. Gustatory system. In: "The Human Nervous System" (G. Paxinos, ed.), pp 845–861. Academic Press, San Diego.
- Ohm, T.G., and Braak, H. 1987. Olfactory bulb changes in Alzheimer's disease. *Acta Neuropathol. (Berl)* 73, 365–369.
- Olsen, K.D., and DeSanto, L.W. 1983. Olfactory neuroblastoma. Arch. Otolaryngol. 109, 797-803.
- Ophir, D., Guterman, A., and Gross-Isseroff, R. 1988. Changes in smell acuity induced by radiation exposure of the olfactory mucosa. Arch. Otolaryngol. Head Neck Surg. 114, 853-855.
- Opper, F.H., and Burakoff, R. 1994. Nutritional support of the elderly patient in an intensive care unit. *Clin. Geriatr. Med.* 10, 31–49.
- Ovesen L., Srensen, M., Hannibal, J., and Allingstrup, L. 1991. Electrical taste detection thresholds and chemical smell detection thresholds in patients with cancer. Cancer 68, 2260–2265.

- Paxton, J. W., and Donald, R. A. 1980. Concentrations and kinetics of carbamazepine in whole saliva, parotid saliva, serum ultrafiltrate, and serum. Clin. Pharmacol. Ther. 28, 695-702.
- Peabody, C.A., and Tinklenberg, J.R. 1985. Olfactory deficits and primary degenerative dementia. *Am. J. Psychiatry* **142**, 524–525.
- Perry, J.D., Frisch, S., Jafek, B., and Jafek, M. 1980. Olfactory detection thresholds using pyridine, thiophene, and phenethyl alcohol. *Otolaryngol. Head Neck Surg.* 88, 778-782.
- Persson, R.E., Izutsu, K.T., Treulove, E.L., and Persson, R. 1991. Differences in salivary flow rates in elderly subjects using xerostomatic medications. *Oral Surg. Oral Med. Oral Pathol.* 72, 42–46.
- Physicians' Desk Reference. 1995. 49th edition. Medical Economics, DesMoines.
- Pinching, A.J. 1977. Clinical testing of olfaction reassessed. Brain 100, 377-388.
- Plata-Salaman, C.R., Scott, T.R., and Smith-Swintosky, V.L. 1992. Gustatory neural coding in the monkey cortex: L-amino acids. *J. Neurophysiol.* 67, 1552–1561.
- Plath, P., and Otten, E. 1969. Untersuchungen uber die Wirksamkeit von Hexetidine bei akuten Erkrankungen des Rachens und der Mundhohle sowie nach Tonsillektomie. *Therapiewocke* 19, 1565–1566.
- Prata, A. 1969. Clinical evaluation of niridazole in Schistosoma mansoni infections. Ann. NY Acad. Sci. 160, 660-669.
- Pritchard, T.C. 1991. The primate gustatory system. In: "Smell and Taste in Health and Disease" (T.V. Getchell, R.L. Doty, L.M. Bartoshuk, and J.B. Snow, eds), pp. 109–125. Raven Press, New York.
- Rabe, F. 1970. Isolierte ageusie: Ein neues Symptom als Nebenwirkung von Medikamenten. *Nervenarzt* 41, 23–27.
- Reutter, K., and Witt, M. 1993. Morphology of vertebrate taste organs and their nerve supply. In: "Mechanisms of Taste Transduction" (S.A. Simon, and S.D. Roper, eds), pp 29–82. CRC Press, Boca Raton.
- Reyes, E.S., Talley, R.W., O'Bryan, R.M., and Gastesi, R.A. 1973. Clinical evaluation of 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU: NSC-409962) with fluoxymesterone (NSC-12165) in the treatment of solid tumors. *Cancer Chemother. Rep.* 57, 225–230.
- Rezek, D. L. 1987. Olfactory deficits as a neurologic sign in dementia of the Alzheimer type. *Arch. Neurol.* 44, 1030–1032.
- Rhodes, V.A., McDaniel, R.W., Hanson, B., Markway, E., and Johnson, M. 1994. Sensory perception of patients on selected antineoplastic chemotherapy protocols. *Cancer Nurs.* 17, 45–51.
- Rhodus, N.L., and Brown, J. 1990. The association of xerostomia and inadequate intake in older adults. J. Am. Diet Assoc. 90, 1688–1692.
- Rollin, H. 1978. Drug-related gustatory disorders. Ann. Otol. Rhinol. Laryngol. 87, 37-42.
- Roses, A.D., and Saunders, A.M. 1994. APOE is a major susceptibility gene for Alzheimer's disease. *Curr. Opin. Biotechnol.* 5, 663-667.
- Rundles, R. W. 1946. Prognosis in the neurologic manifestations of pernicious anemia. *Blood* 1, 209–219.
- Runge, L.A., Pinals, R.S., Lourie, S.H., and Tomar, R.H. 1977. Treatment of rheumatoid arthritis with levamisole: a controlled trial. *Arthritis Rheum.* 20, 1445–1448.
- Ryan, R.E. Sr., and Ryan, R.E. Jr. 1974. Acute nasal sinusitis. Postgrad. Med. 56, 159-162.
- Schaupp, H., and Seilz, J. 1969. Geruch und geschmack bei endokrinen. Erkrankungen. Arch. Klin. Exp. Ohr-Nas-u. Kehlk. Heilk. 195, 179–191.
- Schechter, P.J., and Henkin, R.I. 1974. Abnormalities of taste and smell after head trauma. J. Neurol. Neurosurg. Psychiat. 37, 802–810.
- Scheibel, M.E. and Scheibel, A.B. 1975. Structural changes in the aging brain. In: "Aging: Clinical, Morphological, and Neurochemical Aspects in the Aging Central Nervous

- System" (H. Brody, D. Harman and J. Ordy, eds) Vol. 1, pp. 11-37. Raven Press, New York.
- Schellinger, D., Henkin, R.T., and Smirniotopoulos, J.G. 1983. CT of the brain in taste and smell dysfunction. *Am. J. Neuroradiog.* 4, 752–754.
- Schemper, T., Voss, S., and Cain, W.S. 1981. Odor identification in young and elderly persons: Sensory and cognitive limitations. *J. Gerontol.* **36**, 446–452.
- Schiffman, S. 1977. Food recognition by the elderly. J. Gerontol. 32, 586-592.
- Schiffman, S. 1979. Changes in taste and smell with age: Psychophysical aspects. In: "Sensory systems and communication in the elderly" (J. M. Ordy, and K. Brizzee, eds) Vol. 10 Aging, pp. 227–246. Raven Press, New York.
- Schiffman, S. S. 1983. Taste and smell in disease. N. Engl. J. Med. 308, 1275–1279, 1337–1343. Schiffman, S. S. 1993. Perception of taste and smell in elderly persons. Crit. Rev. Food Sci. Nutr. 33, 17–26.
- Schiffman, S.S. 1994. The role of taste and smell in appetite and satiety: impact of chemosensory changes due to aging and drug interactions. In: "Nutrition in a Sustainable Environment" (M.L.Wahlqvist, A.S. Truswell, R. Smith, P.J. Nestel, eds). Proceedings of the XV International Congress of Nutrition: IUNS Adelaide, pp. 728–731. Smith-Gordon, London; Nishimura, Niigata-Shi, Japan.
- Schiffman, S.S. 1997. Taste and smell losses in normal aging and disease. *JAMA* 278, 1357–1362. Schiffman, S.S. 1998. Sensory enhancement of foods for the elderly with monosodium glutamate and flavors. *Food Rev. Internat.* 14, 321–333.
- Schiffman, S.S. 2000. Taste quality and neural coding: implications from psychophysics and neurophysiology. *Physiol. Behav.* in press.
- Schiffman, S.S., and Clark, T.B. 1980. Magnitude estimates of amino acids for young and elderly subjects. *Neurobiol. Aging* 1, 81–91.
- Schiffman, S.S., and Erickson, R.P. 1993. Psychophysics: insights into transduction mechanisms and neural coding. In: "Mechanisms of Taste Transduction" (S.A. Simon and S.D. Roper, eds) pp. 395-424. CRC Press, Boca Raton.
- Schiffman, S.S., and Graham, B.G. 1991. Unpublished data.
- Schiffman, S.S., and Graham, B.G. (2000). Taste and smell perception affect appetite and immunity in the elderly. *Eur. J. Clin. Nutr*, 54(Supplement 3): S54–S63: 2000.
- Schiffman, S.S., and Leffingwell, J.C. 1981. Perception of odors of simple pyrazines by young and elderly subjects: A multidimensional analysis. *Pharmacol. Biochem. Behav.* 14, 787–798.
- Schiffman, S.S., and Miletic, I.D. 1999. Effect of taste and smell on secretion rate of salivary IgA in elderly and young persons. *J. Nutr. Health Aging* 3, 158–164.
- Schiffman, S. S., and Nagle, H. T. (1992). Effect of environmental pollutants on taste and smell. *Otolaryngol. Head Neck Surg.* **106**, 693–700.
- Schiffman, S., and Pasternak, M. 1979. Decreased discrimination of food odors in the elderly. J. Gerontol. 34, 73-79.
- Schiffman, S.S., and Warwick, Z.S. 1991. Changes in taste and smell over the lifespan: Effects on appetite and nutrition in the elderly. In: "Chemical Senses" (M.I. Friedman, M.G. Tordoff, and M.R. Kare, eds) Vol. 4 Appetite and Nutrition, pp. 341–365. Marcel Dekker, New York.
- Schiffman, S.S., and Warwick, Z.S. 1992. The biology of taste and food intake. In: "The Science of Food Regulation: Food intake, taste, nutrient partitioning, and energy expenditure" (G.A. Brayand, and D.H. Ryan, eds), Vol. 2, pp. 293–312. Pennington Center Nutrition Series, Louisiana State University Press, Baton Rouge.
- Schiffman, S.S., and Warwick, Z.S. 1993. Effect of flavor enhancement of foods for the elderly on nutritional status: food intake, biochemical indices and anthropometric measures. *Physiol Behav.* **53**, 395–402.

- Schiffman, S.S., and Wedral, E. 1996. Contribution of taste and smell losses to the wasting syndrome. *Age Nutr.* 7, 106–120.
- Schiffman, S.S., Clark, C.M., and Warwick, Z.S. 1990a. Gustatory and olfactory dysfunction in dementia: not specific to Alzheimer's disease. *Neurobiol. Aging* 11, 597-600.
- Schiffman, S.S., Crumbliss, A.L., Warwick, Z.S., and Graham, B.G. 1990b. Thresholds for sodium salts in young and elderly subjects: correlation with molar conductivity of anion. *Chem. Senses* 15, 671-678.
- Schiffman, S.S., Frey, A.E., Luboski, J.A., Foster, M.A., and Erickson, R.P. 1991. Taste of glutamate salts in young and elderly subjects: Role of inosine 5'-monophosphate and ions. *Physiol. Behav.* **49**, 843–854.
- Schiffman, S.S., Gatlin, L.A., Frey, A.E., Heiman, S.A., Stagner, W.C., and Cooper, D.C. 1994.
 Taste perception of bitter compounds in young and elderly persons: relation to lipophilicity of bitter compounds. *Neurobiol. Aging* 15, 743–750.
- Schiffman, S.S., Graham, B.G., Sattely-Miller, E.A., and Warwick, Z.S. 1998. Orosensory perception of dietary fat. *Curr. Dir. Psychol. Sci.* 7, 137–143.
- Schiffman, S.S., Hornack, K., and Reilly, D. 1979. Increased taste thresholds of amino acids with age. Am. J. Clin. Nutr. 32, 1622-1627.
- Schiffman, S.S., Lindley, M.G., Clark, T.B., and Makino, C. 1981. Molecular mechanism of sweet taste: Relationship of hydrogen bonding to taste sensitivity for both young and elderly. *Neurobiol. Aging* 2, 173–185.
- Schiffman, S.S., Lockhead, E., and Maes, F.W. 1983. Amiloride reduces the taste intensity of Na⁺ and Li⁺ salts and sweeteners. *Proc. Natl. Acad. Sci. USA* **80**, 6136–6140.
- Schiffman, S.S., Nash, M.L., and Dackis, C. 1978. Reduced olfactory discrimination in patients on chronic hemodialysis. *Physiol. Behav.* 21, 239–242.
- Schiffman, S.S., Zervakis, J., Shaio E., and Heald, A.E. 1999a. Effect of the nucleoside analogs zidovudine, didanosine, stavudine and lamivudine on the sense of taste. *Nutrition* 15, 854–859.
- Schiffman, S.S., Zervakis, J., Graham, B.G., and Westhall, H.L. 2000a. Age-related chemosensory losses: effect of medications. In: "Taste" (P. Givens and D. Paredes, eds) in press. American Chemical Society.
- Schiffman, S.S., Zervakis, J., Heffron, S., and Heald, A.E. 1999b. Effect of protease inhibitors on the sense of taste. *Nutrition* 15, 767-772.
- Schiffman, S.S., Zervakis, J., Suggs, M.S., Budd, K.C., and Iuga, L. 2000b. Effect of tricyclic antidepressants on taste responses in humans and gerbils. *Pharmacol. Biochem. Behav.*, in press.
- Schiffman, S.S., Zervakis, J., Suggs, M.S., Shaio, E., and Sattely-Miller, E.A. 1999c. Effect of medications on taste: Example of amitriptyline HCl. Physiol. Behav. 66, 183–192.
- Schiffman, S.S., Zervakis, J., Westall, H.L., Graham, B.G., Metz, A., Bennett, J.L., and Heald, A. E. 2000c. Effect of antimicrobial and anti-inflammatory medications on the sense of taste. *Physiol. Behav.*, in press.
- Schneeberg, N.G. 1952. Loss of sense of taste due to methylthiouracil therapy. *JAMA* 149, 1091–1093.
- Scott, T.R. 1992. Taste: the neural basis of body wisdom. World Rev. Nutr. Diet 67, 1-39.
- Scott, P.J. 1960. Glossitis with complete loss of taste sensation during Dindevan treatment: Report of a case. NZ Med. J. 59, 296.
- Serby, M. 1986. Olfaction and Alzheimer's disease. *Prog. Neuropsychopharmacol. Biol. Psychiatry* **10**, 579–586.
- Serby, M. 1987. Olfactory deficits in Alzheimer's disease. J. Neural Transm. [Suppl] 24, 69-77.
- Serby, M., Corwin, J., Conrad, P., and Rotrosen, J. 1985a. Olfactory dysfunction in Alzheimer's disease and Parkinson's disease. *Am. J. Psychiatry* 142, 781–782.

- Serby, M., Corwin, J., Novatt, A., Conrad, P., and Rotrosen, J. 1985b. Olfaction in dementia [letter]. *J. Neurol. Neurosurg. Psychiat.* 48, 848–849.
- Seydell, E.M., and McKnight, W.P. 1948. Disturbances of olfaction resulting from intranasal use of tyrothricin: A clinical report of seven cases. *Arch. Otolaryngol.* 47, 465–470.
- Shastry, B.S. 1998. Molecular genetics of familial Alzheimer disease. *Am. J. Med. Sci.* 315, 266–272.
- Shepard, T.H., and Gartler, S.M. 1960. Increased incidence of nontasters of phenylthiocarbamide among congenital athyreotic cretins. *Science* 131, 929.
- Siegfried, J., and Zumstein, H. 1971. Changes in taste under L-DOPA therapy. Z. Neurol. 200, 345-348.
- Simpson, J.R. 1975. Idoxuridine in the treatment of herpes zoster. *Practitioner* 215, 226–229.
- Simpson, J., Yates, C. M., Gordon A., and St. Clair, D.M. 1984. Olfactory tubercle choline acetyltransferase activity in Alzheimer-type dementia, Down's syndrome and Huntington's chorea. J. Neurol. Neurosurg. Psychiatry 47, 1138–1139.
- Singh, N., Grewal, M. S., and Austin, J.H. 1970. Familial anosmia. Arch. Neurol. 22, 40-44.
- Skouby, A.P., and Zilstorff-Pedersen, K. 1954. The influence of acetylcholine-like substances, menthol and strychnine on olfactory receptors in man. *Acta Physiol. Scand.* 32, 252–258.
- Smith, C.G. 1942. Age incidence of atrophy of olfactory nerves in man. J. Comp. Neurol. 77, 589–595.
- Smith, F.R., Henkin, R.I., and Dell, R.B. 1976. Disordered gustatory acuity in liver disease. *Gastroenterology* **70**, 568–571.
- Smith, R.G., and Burtner, A.P. 1994. Oral side-effects of the most frequently prescribed drugs. Spec. Care Dentist. 14, 96–102.
- Soni, N.K., and Chatterji, P. 1976. Abnormalities of taste. Br. Med. J. 2, 198.
- Soni, N.K., and Chatterji, P. 1981. Disturbance of taste in leprosy. J. Laryngol. Otol. 95, 717-720.
- Soni, N.K., and Chatterji, P. 1985. Gustotoxicity of bleomycin. *Orl. J. Otorhinolaryngol. Relat. Spec.* 47, 101–104.
- Soria, E.D., Candaras, M.M., and Truax, B.T. 1990. Impairment of taste in the Guillain-Barre syndrome. *Clin. Neurol. Neurosurg.* **92**(1), 75–79.
- Spielman, A.I., Huque, T., Whitney, G., and Brand, J.G. 1992. The diversity of bitter taste signal transduction mechanisms. *Soc. Gen. Physiol. Ser.* 47, 307–324.
- St Clair, D.M., Simpson, J., Yates, C.M., and Gordon, A. 1985. Olfaction in dementia: a response. J. Neurol. Neurosurg Psychiatry 48, 849.
- State, F.A., Hamed, M.S., and Bondok, A.A. 1977. Effect of vincristine on the histological structure of taste buds. *Acta Anat.* **99**, 445–449.
- Sternlieb, I., and Scheinberg, I.H. 1964. Penicillamine therapy for hepatolenticular degeneration. JAMA 189, 748-754.
- Stevens, D.A., and Lawless, H.T. 1981. Age related changes in flavor perception. *Appetite* 2, 127–136.
- Stevens, J.C. and Cain, W.S. 1985. Age-related deficiency in the perceived strength of six odorants. Chem. Senses 10, 517-529.
- Stevens, J.C., Bartoshuk, L.M., and Cain, W.S. 1984. Chemical senses and aging: Taste versus smell. *Chem. Senses* 9, 167-179.
- Stevens, J.C., Cruz, L.A., Hoffman, J.M., and Patterson, M.Q. 1995. Taste sensitivity and aging: high incidence of decline revealed by repeated threshold measures. *Chem. Senses* 20, 451–459.
- Stevens, J.C., Plantinga, A., and Cain, W.S. 1982. Reduction of odor and nasal pungency associated with aging. *Neurobiol. Aging* 3, 125–132.
- Stevens, J.C., and Dadarwala, A.D. 1993. Variability of olfactory threshold and its role in assessment of aging. *Percept. Psychophys.* **54**, 296–302.

- Straand, J. and Rokstad, K.S. 1999. Elderly patients in general practice: diagnoses, drugs and inappropriate prescriptions. A report from the More & Romsdal Prescription Study. Fam. Pract. 16, 380-388.
- Strandbygard, E. 1954. Treatment of ozena and rhinopharyngitis chronica sicca with vitamin A. *Arch. Otolaryngol.* **59**, 485–491.
- Strassman, H.D., Adams, B., and Pearson, A.W. 1970. Metronidazole effect on social drinkers. Q. J. Stud. Alcohol 31, 394–398.
- Stricker, B.H., Van Riemsdijk, M.M., Sturkenboom, M.C., and Ottervanger, J.P. 1996. Taste loss to terbinafine: a case-control study of potential risk factors. *Br. J. Clin. Pharmacol.* 42, 313–318.
- Strittmatter, W.J., Saunders, A.M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G.S., and Roses, A.D. (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. *Proc. Natl. Acad. Sci. USA* 90, 1977–1981.
- Sumner, D. 1964. Post-traumatic anosmia. Brain 87, 107-120.
- Sunohara, N., Sakuragawa, N., Satoyoshi, E., Tanue, A., and Shapiro, L.J. 1986. A new syndrome of anosmia, ichthyosis, hypogonadism, and various neurological manifestations with deficiency of steroid sulfatase and arylsulfatase C. Ann. Neurol. 19, 174–181.
- Talamo, B.R., Rudel, R., Kosik, K.S., Lee, V.M., Neff, S., Adelman, L., and Kauer, J.S. 1989.
 Pathological changes in olfactory neurons in patients with Alzheimer's disease. *Nature* 337, 736–739.
- Thumfart, W., Plattig, K.H., and Schlict, N. 1980. Smell and taste thresholds in older people. *Zeit fur Gerontol.* 13, 158–188.
- Tominack, R.L., Wills, R.J., Gustavson, L.E., and Hayden, F.G. 1988. Multiple-dose pharmacokinetics of rimantadine in elderly adults. *Antimicrob. Agents Chemother.* **32**, 1813–1819.
- Tomita, Y., and Osaki, T. 1990. Gustatory impairment and salivary gland pathophysiology in relation to oral cancer treatment. *Int. J. Oral Maxillofac. Surg.* 19, 299–304.
- Tomlinson, B. E., and Henderson, G. 1976. Some quantitative cerebral findings in normal and demented old people. In: "Neurobiology of Aging" (R.D. Terry and S. Gershon, eds) Vol. 3, pp. 183–204. Raven Press, New York.
- Trant, A.S., Serin, J., and Douglass, H.O. 1982. Is taste related to anorexia in cancer patients? *Am. J. Clin. Nutr.* 36, 45–58.
- Turner, P. 1965. Some observations on centrally-acting drugs in man. *Proc. R. Soc. Med.* 58, 913-914.
- Ujike, H., Yamamoto, M., and Hara, I. 1987. Taste loss as an initial symptom of primary amyloidosis [letter]. J. Neurol. Neurosurg. Psychiat. 50, 111-112.
- United States Bureau of the Census. 1996. Statistical Abstract of the United States 1996. 15-16.
- US Senate Special Committee on Aging (in conjunction with the American Association of Retired Persons, the Federal Council on the Aging, and the Administration on Aging). Aging America, Trends and Projections 1985–1986 Edition. pp. 8–28.
- Van Buskirk, R.L., and Erickson, R.P. 1977. Odorant responses in taste neurons of the rat NTS. Brain Res. 135, 287–303.
- Venstrom, D., and Amoore, J.E. 1968. Olfactory threshold in relation to age, sex, or smoking. J. Food Sci. 33, 264–265.
- Vickers, Z.M., Nielsen, S.S., and Theologides, A. 1981. Food preferences of patients with cancer. J. Am. Diet. Assoc. 79, 441–445.
- Viskoper, R. J., and Lugassy, G. 1979. Elevated taste threshold for salt in hypertensive subjects. *Kidney Int.* 15, 582.
- Vlasses, P.H., and Ferguson, R.K. 1979. Temporary ageusia related to captopril. *Lancet* 2, 526. von Skramlik, E. 1963. The fundamental substrates of taste. In: "Olfaction and Taste" (Y. Zotterman, ed.) pp. 125–132. Pergamon Press, Oxford.

- Waldton, S. 1974. Clinical observations of impaired cranial nerve function in senile dementia. *Acta Psychiatr. Scand.* **50**, 539–547.
- Wall Street Journal. Data from Alzheimer's Association; John Ransom, Raymond James & Associates; Health Care Financing Administration; American Health Care Association. Monday, November 16, 1998.
- Ward, C.D., Hess, W.A., and Calne, D.B. 1983. Olfactory impairment in Parkinson's disease. *Neurology* 33, 943–946.
- Warner, M.D., Peabody, C.A., and Berger, P.A. 1988. Olfactory deficits and Down's syndrome. *Biol. Psychiat.* 23, 836–839.
- Warner, M.D., Peabody, C.A., Flattery, J.J. and Tinklenberg, J.R. 1986. Olfactory deficits and Alzheimer's disease. *Biol. Psychiatry* 21, 116–118.
- Wattenberg, B.J. 1976. "The Statistical History of the United States: from Colonial Times to the Present." p.15. Basic Books, New York.
- Weinstock, R.S., Wright, H.N., Spiegel, A.M., Levine, M.A., and Moses, A.M. 1986. Olfactory dysfunction in humans with deficient guanine nucleotide-binding protein. *Nature* 322, 635–636.
- Whittington, J., and Raftery, E.B.A. 1980. Controlled comparison of oxyfedrine, isosorbide dinitrate and placebo in the treatment of patients suffering attacks of angina pectoris. *Br. J. Clin. Pharmacol.* 10, 211–215.
- Williams, L.R., and Cohen, M.H. 1978. Altered taste thresholds in lung cancer. Am. J. Clin. Nutr. 31, 122-125.
- Wolberg, F.L., and Ziegler, D.K. 1982. Olfactory hallucination in migraine. Arch. Neurol. 39, 382.
- Wysocki, C.J., and Gilbert, A.N. 1989. National Geographic Smell Survey. Effects of age are heterogenous. *Ann. NY Acad. Sci.* **561**, 12–28.
- Yamada, Y., and Tomita, H. 1989. Influences on taste in the area of chorda tympani nerve after transtympanic injection of local anesthetic (4% lidocaine). Auris Nasus Larynx [16 Suppl.] 1, S41-46.
- Yanagisawa, K., Bartoshuk, L.M., Catalanotto, F.A., Karrer, T.A., and Kveton, J.F. 1998. Anesthesia of the chorda tympani nerve and taste phantoms. *Physiol. Behav.* 63, 329–335.
- Yousem, D.M., Geckle, R.J., Bilker, W.B., McKeown, D.A., and Doty, R.L. 1996. Posttraumatic olfactory dysfunction: MR and clinical evaluation. Am. J. Neuroradiol. 17, 1171–1179.
- Zald, D.H., and Pardo, J.V. 1997. Emotion, olfaction and the human amygdala: Amygdala activation during aversive olfactory stimulation. *Proc. Natl. Acad. Sci. USA* **94**, 4119–4124.
- Zeng, Q., and Oakley, B. 1999. p53 and Bax: putative death factors in taste cell turnover. J. Comp. Neurol. 413, 168–180.
- Zervakis, J., Graham, B.G., and Schiffman, S.S. 2000. Taste effects of lingual application of cardiovascular medications. *Physiol. Behav.* **68**, 405–413.
- Zhao, H., Ivic, L., Otaki, J.M., Hashimoto, M., Mikoshiba, K., and Firestein, S. 1998. Functional expression of a mammalian odorant receptor. *Science* 279, 237–242.
- Zilstorff, K. 1965. Sense of smell alterations by cocaine and tetracaine. *Arch. Otolaryngol.* **82**, 53-55.
- Zilstorff, K., and Herbild, O. 1979. Parosmia. Acta Otolaryngol. [Suppl] 360, 40-41.